PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An innovative method of predicting the maximum flow in stormwater sewage systems using soft-sensors

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Innowacyjna metoda prognozowania maksymalnego przepływu w systemach kanalizacji deszczowej z wykorzystaniem soft-sensorów
Języki publikacji
EN
Abstrakty
EN
Developing universal hydrological models for modeling urban catchments remains one of the major challenges in contemporary hydrology. This study aimed to create a model that integrates catchment characteristics, sewer network topology, sewer storage capacity, and rainfall data, along with a sensitivity analysis of input parameters. The goal was to evaluate the potential of advanced analytical methods, specifically, Multivariate Adaptive Regression Splines (MARS) and soft-sensor technology, to improve peak flow (Qm) forecasting in stormwater systems. The results showed that combining MARS models with soft sensors yields high forecasting accuracy (R² = 0.96, RMSE = 0.038), even under variable rainfall conditions. However, the development of universally applicable model relationships proved challenging due to difficulties in parameterizing the model under changing rainfall scenarios. Additionally, the inclusion of a risk analysis method also enabled consideration of sewer network capacity and introduced a safety margin coefficient to assess system flexibility under future climate conditions. While the proposed approach does not lead to the creation of universal tools, it offers valuable insights for further research on adapting sewer systems to evolving hydrological conditions. The findings suggest promising directions for the development of cost-free, zero-emission soft sensors and models adaptable across diverse urban catchments.
PL
Tworzenie uniwersalnych modeli hydrologicznych do modelowania zlewni miejskich jest jednym z największych wyzwań współczesnej hydrologii. Niniejsze badanie podejmuje próbę opracowania modelu uwzględniającego różnorodne cechy zlewni, topologię sieci kanalizacyjnej, retencję w kanałach oraz dane opadowe, a także przeprowadzenia analizy wrażliwości modelu na zmiany parametrów wejściowych. Celem było zbadanie, w jakim stopniu zastosowanie zaawansowanych metod analitycznych, takich jak modele MARS (Multivariate Adaptive Regression Splines) oraz technologia soft-sensorów, może poprawić prognozowanie przepływów szczytowych (Qm) w systemach kanalizacji deszczowej. W badaniu wykorzystano zaawansowane metody analityczne, w tym modele MARS, do prognozowania przepływów szczytowych w systemach kanalizacji deszczowej. W proces modelowania włączono technologię soft-sensorów, uwzględniającą różnorodne cechy zlewni, topologię sieci kanalizacyjnej, retencję w kanałach oraz zmienne dane opadowe. Dodatkowo przeprowadzono analizę wrażliwości w celu oceny reakcji modelu na zmiany parametrów wejściowych. Wyniki pokazały, że połączenie modeli MARS z soft-sensorami pozwala na uzyskanie wysokiej dokładności prognoz (R² = 0,96, RMSE = 0,038), pomimo zmienności warunków opadowych. Jednakże, nie udało się opracować uniwersalnych zależności modelowych z powodu trudności w parametryzacji modelu w kontekście zmiennych danych opadowych. Chociaż proponowane podejście nie prowadzi do stworzenia uniwersalnych narzędzi, dostarcza cennych wskazówek do dalszych badań nad adaptacją systemów kanalizacyjnych do zmieniających się warunków hydrologicznych. Zastosowana metoda analizy ryzyka umożliwiła uwzględnienie przepustowości sieci kanalizacyjnej oraz wprowadzenie współczynnika marginesu bezpieczeństwa, który ocenia elastyczność systemu w kontekście przyszłych zmian klimatycznych. Badanie wskazuje kierunki przyszłych prac nad modelami, które mogłyby być stosowane w różnych zlewniach miejskich, szczególnie poprzez rozwój bezkosztowych, zeroemisyjnych soft-sensorów.
Rocznik
Strony
54--73
Opis fizyczny
Bibliogr. 83 poz., rys., tab., wykr.
Twórcy
  • Department of Water and Wastewater Engineering, Silesian University of Technology, Gliwice, Poland
  • Faculty of Environmental Engineering, Geomatics and Renewable Energy, Kielce University of Technology, Poland
  • Faculty of Environmental Engineering, Geomatics and Renewable Energy, Kielce University of Technology, Poland
  • Institute of Environmental Engineering, Warsaw University of Life Sciences-SGGW, Poland
  • Institute of Earth Resources, Faculty of Mining, Ecology, Process Control and Geotechnologies, Technical University of Košice, Slovak Republic
Bibliografia
  • 1. Addison-Atkinson, W., Chen, A.S., Memon, F.A. & Chang, T.J., 2022. Modelling urban sewer flooding and quantitative microbial risk assessment: a critical review. J. Flood Risk Mangement. 15, e12844.
  • 2. Amiri, H., Azadi, S., Javadpour, S., Naghavi, A.A. & Boczkaj, G., 2022. Selecting wells for an optimal design of groundwater monitoring network based on monitoring priority map: a Kish Island case study. Water Resour. Ind. 27, 100172 DOI:10.1016/j.wri.2022.100172.
  • 3. Bach, P. M., Kuller, M., McCarthy, D. T. & Deletic, A. (2020). A spatial planning-support system for generating decentralised urban stormwater management schemes. Science of The Total Environment, 138282. DOI:10.1016/j.scitotenv.2020.138282.
  • 4. Banasik, K., Krajewski, A., Sikorska-Senoner, A. E. & Hejduk, L. (2014). Curve number estimation for a small urban catchment from recorded rainfall-runoff events. Archives of Environmental Protection, 40, 3, pp. 21-30. DOI:10.2478/aep-2014-0032.
  • 5. Barco, J., Wong, K.M. & Stenstrom, M.K. (2008). Automatic calibration of the U.S. EPA SWMM model for a large urban catchment. J. Hydraul. Eng. 134, pp. 466-474. DOI:10.1061/(ASCE)0733-9429(2008)134:4(466).
  • 6. Bell, C. D., Wolfand, J. M., Panos, C. L., Bhaskar, A. S., Gilliom, R. L., Hogue, T. S. & Jefferson, A. J. (2020). Stormwater control impacts on runoff volume and peak flow: A meta‐analysis of watershed modeling studies. Hydrological Processes. DOI:10.1002/hyp.13784.
  • 7. Beven, K. (2020). Deep learning, hydrological processes and the uniqueness of place. Hydrological Processes, 34, 16, pp. 3608-3613. DOI:10.1002/hyp.13805.
  • 8. Bhaskar, A. S., Hogan, D. M., Nimmo, J. R. & Perkins, K. S. (2018). Groundwater recharge amidst focused stormwater infiltration. Hydrological Processes, 32, 13, pp. 2058-2068. DOI:10.1002/hyp.13137.
  • 9. Birgani, Y. T., Yazdandoost, F. & Malaekepour, S. M. (2013). Urban Drainage Systems Risk Assessment under Climate Change Conditions.
  • 10. Butler, D., Farmani, R., Fu, G., Ward, S., Diao, K. & Astaraie-Imani, M. (2014). A new approach to urban water management: Safe and sure. Procedia Engineering, 89, pp. 347-354.
  • 11. Cantone, J. & Schmidt, A. (2011). Improved understanding and prediction of the hydrologic response of highly urbanized catchments through development of the Illinois Urban Hydrologic Model. Water Resources Research, 47, 8. DOI:10.1029/2010wr009330.
  • 12. Chadalawada, J., Havlicek, V. & Babovic, V. A (2017). Genetic Programming Approach to System Identification of Rainfall-Runoff Models. Water Resour Manage 31, pp. 3975-3992. DOI:10.1007/s11269-017-1719-1.
  • 13. Cristiano, E., ten Veldhuis, M.C., Gaitan, S., Rodriguez, S.O. & van de Giesen, N. (2018). Critical scales to explain urban hydrological response. Hydrol. Earth Syst. Sci. Discuss. DOI:10.5194/hess-2017-715.
  • 14. Cristiano, E., ten Veldhuis, M.C., Wright, D.B., Smith, J.A. & van de Giesen, N. (2019). The influence of rainfall and catchment critical scales on urban hydrological response sensitivity. Water Resour. Res. 55, pp. 3375-3390. DOI:10.1029/2018WR024143.
  • 15. De Paola, F. & Ranucci, A. (2012). Analysis of spatial variability for stormwater capture tank assessment. Irrig. Drain. 61, pp. 682-690. DOI:10.1002/ird.
  • 16. Del Giudice, D., Honti, M., Scheidegger, A., Albert, C., Reichert, P. & Rieckermann, J. (2013). Improving uncertainty estimation in urban hydrological modeling by statistically describing bias. Hydrology and Earth System Sciences, 17, 10, pp. 4209-4225. DOI:10.5194/hess-17-4209-2013.
  • 17. Duan, H., Akker, B. van den, Thwaites, B. J., Peng, L., Herman, C., Pan, Y. & Ye, L. (2020). Mitigating nitrous oxide emissions at a full-scale wastewater treatment plant. Water Research, 116196. DOI:10.1016/j.watres.2020.116196
  • 18. DWA-A 118E, 2006. Hydraulic Dimensioning and Verification of Drain and Sewer Systems. DWA German Association for Water, Wastewater and Waste, Hennef, Germany.
  • 19. Fatone, F., Szeląg, B., Kiczko, A., Majerek, D., Majewska, M., Drewnowski, J. & Łagód, G. (2021). Advanced sensitivity analysis of the impact of the temporal distribution and intensity of rainfall on hydrograph parameters in urban catchments. Hydrol. Earth Syst. Sci. 25, pp. 5493-5516. DOI:10.5194/hess-25-5493-2021.
  • 20. Fraga, I., Cea, L., Puertas, J., Su´arez, J., Jim´enez, V. & J´acome, A. (2016). Global sensitivity and GLUE-based uncertainty analysis of a 2D-1D dual urban drainage model. J. Hydrol. Eng. 21, 04016004. DOI:10.1061/(ASCE)HE.1943-5584.0001335.
  • 21. Friedman, J. H. & Roosen, C. B. (1995). An introduction to multivariate adaptive regression splines. Statistical Methods in Medical Research, 4, 3, pp. 197-217. DOI:10.1177/096228029500400303.
  • 22. Fu, G. & Butler, D. (2014). Copula-based frequency analysis of overflow and flooding in urban drainage systems. J. Hydrol. 510, pp. 49-58. DOI:10.1016/j.jhydrol.2013.12.006.
  • 23. Fu, G., Jin, Y., Sun, S., Yuan, Z. & Butler, D. (2022). The role of deep learning in urban water management: A critical review. Water Research 223, 1 118973, DOI:10.1016/j.watres.2022.118973.
  • 24. Gargano, R., Di Palma, F., de Marinis, G., Granata, F. & Greco, R. (2015). A stochastic approach for the water demand of residential end users. Urban Water Journal, 13, 6, pp. 569-582. DOI:10.1080/1573062x.2015.1011.
  • 25. Gires, A., Tchiguirinskaia, I., Schertzer, D., Ochoa-Rodriguez, S., Willems, P., Ichiba, A. & ten Veldhuis, M.-C. (2017). Fractal analysis of urban catchments and their representation in semi-distributed models: imperviousness and sewer system. Hydrology and Earth System Sciences, 21, 5, pp./ 2361-2375. DOI:10.5194/hess-21-2361-2017.
  • 26. Gironás, J., Roesner, L. A., Rossman, L. A. & Davis, J. (2010). A new applications manual for the Storm Water Management Model (SWMM), Environ. Modell. Softw., 25, pp. 813-814. DOI:10.1016/j.envsoft.2009.11.009, 2010.
  • 27. Gong, Y., Zhang, G., Hao, Y. & Nie, L., 2022. Enrichment Evaluation of Heavy Metals from Stormwater Runoff to Soil and Shrubs in Bioretention Facilities. Water, 14(4), 638. DOI:10.3390/w14040638
  • 28. Guan, M., Sillanpää, N. & Koivusalo, H. (2015). Storm runoff response to rainfall pattern, magnitude and urbanization in a developing urban catchment. Hydrological Processes, 30, 4, 543-557. DOI:10.1002/hyp.10624.
  • 29. Guo, K., Guan, M. & Yu, D. (2021). Urban surface water flood modelling - a comprehensive review of current models and future challenges. Hydrol. Earth Syst. Sci. 25, pp. 2843-2860. DOI:10.5194/hess-25-2843-2021.
  • 30. Guo, K., Guan, M., Haochen, Y. & Xilin, X. (2023). A spatially distributed hydrodynamic model framework for urban flood hydrological and hydraulic processes involving drainage flow quantification. Journal of Hydrology. 625. DOI:10.1016/j.jhydrol.2023.130135.
  • 31. Hauger, M. B., Mouchel, J. M. & Mikkelsen, P. S. (2006). Indicators of hazard, vulnerability and risk in urban drainage. Water science and technology, 54, 6-7, pp. 441-450. DOI:10.2166/wst.2006.622.
  • 32. Ichiba, A., Gires, A., Tchiguirinskaia, I., Schertzer, D., Bompard, P. & Ten Veldhuis, M.-C. (2018). Scale effect challenges in urban hydrology highlighted with a distributed hydrological model. Hydrology and Earth System Sciences, 22, 1, pp. 331-350. DOI:10.5194/hess-22-331-2018.
  • 33. Jato-Espino, D., Sillanpää, N., Andrés-Doménech, I. & Rodriguez-Hernandez, J. (2017). Flood Risk Assessment in Urban Catchments Using Multiple Regression Analysis. Journal of Water Resources Planning and Management, 144, 2. DOI:10.1061/(ASCE)WR.1943-5452.0000874.
  • 34. Jato-Espino, D., Sillanp¨a¨a, N., Andr´es-Dom´enech, I. & Rodriguez-Hernandez, J. (2018). Flood risk assessment in urban catchments using multiple regression analysis. J. Water Resour. Planning Manag. 144, 04017085. DOI:10.1061/(ASCE)WR.1943-5452.0000874.
  • 35. Kiczko, A., Szeląg, B., Kozioł, A. P., Krukowski, M., Kubrak, E., Kubrak, J. & Romanowicz, R. J. (2018). Optimal capacity of a stormwater reservoir for flood peak reduction. Journal of Hydrologic Engineering, 23, 4. DOI:10.1061/(ASCE)HE.1943-5584.0001636
  • 36. Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S. & Nearing, G. S. (2019). Towards Improved Predictions in Ungauged Basins: Exploiting the Power of Machine Learning. Water Resources Research. DOI:10.1029/2019wr026065
  • 37. Krebs, G., Kokkonen, T., Valtanen, M., Setälä, H. & Koivusalo, H. (2014). Spatial resolution considerations for urban hydrological modelling, J. Hydrol., 512, pp. 482-497. DOI:10.1016/j.jhydrol.2014.03.013.
  • 38. Kumar, S., Agarwal, A., Ganapathy, A., Villuri, V.GK. Pasupuleti, S., Kumar, D., Kaushal, D.R., Gosain, A.K. & Sivakuma, B. (2022). . Impact of climate change on stormwater drainage in urban areas. Stoch Environ Res Risk Assess 36, pp. 77-96. DOI:10.1007/s00477-021-02105-x.
  • 39. Kwon, S. H. & Kim, J. H. (2021). Machine Learning and Urban Drainage Systems: State-of-the-Art Review. Water, 13, 24, 3545. DOI:10.3390/w13243545.
  • 40. Li, X. & Willems, P. (2020). A hybrid model for fast and probabilistic urban pluvial flood prediction. Water Resour. Res. 56, 6. DOI:10.1029/2019WR025128.
  • 41. Li, X., Erpicum, S., Mignot, E., Archambeau, P., Pirotton, M. & Dewals, B. (2022). Laboratory modelling of urban flooding. Sci. Data, 9, 1. DOI:10.1038/s41597-022-01282-w.
  • 42. Liu, C. Y. & Chui, T. F. M. (2017). Factors influencing stormwater mitigation in permeable pavement. Water, 9, 12, 988. DOI:10.3390/w9120988.
  • 43. Liu ,J., Cho, H-S., Osman, S., Jeong, H-G. & Lee, K. (2022). Review of the status of urban flood monitoring and forecasting in TC region, Tropical Cyclone Research and Review 11, 2, pp.103-119.. DOI:10.1016/j.tcrr.2022.07.001.
  • 44. Luiso, J. E. & Giribet, J. I. (2017). Optical flow sensor. 2017 XVII Workshop on Information Processing and Control (RPIC). DOI:10.23919/rpic.2017.8211652.
  • 45. Meierdiercks, K.L., Smith, J.A., Baeck, M.L. & Miller, A.J. (2010). Analyses of urban drainage network structure and its impact on hydrologic response. JAWRA Journal of the American Water Resources Association 46, pp. 932-943. DOI: 10.1111/j.1752-1688.2010.00465.x.
  • 46. Mejía, A. I. & Moglen, G. E. (2010). Impact of the spatial distribution of imperviousness on the hydrologic response of an urbanizing basin. Hydrological Processes, 24, 23, pp. 3359-3373. DOI:10.1002/hyp.7755.
  • 47. Al Mehedi, M. A., Amur, A., Metcalf, J., McGauley, M., Smith, V. & Wadzuk, B. (2023). Predicting the performance of green stormwater infrastructure using multivariate long short-term memory (LSTM) neural network. Journal of Hydrology, 625, 130076. DOI:10.1016/j.jhydrol.2023.130076.
  • 48. Mondal, K., Bandyopadhyay, S. & Karmakar, S. (2023). Framework for global sensitivity analysis in a complex 1D-2D coupled hydrodynamic model: Highlighting its importance on flood management over large data-scarce regions. Journal of Environmental Management, 332, 117312. DOI:10.1016/j.jenvman.2023.117312
  • 49. Moon, H., Yoon, S. & Moon, M., (2023). Urban flood forecasting using a hybrid modeling approach based on a deep learning technique. Journal of Hydroinformatics,25, 2, pp. 593-610. DOI:10.2166/hydro.2023.203.
  • 50. Mor´an-Valencia, M., Flegl, M. & Güemes-Castorena, D. (2023). A state-level analysis of the water system management efficiency in Mexico: two-stage DEA approach. Water Resour. Ind. 29, 100200 DOI:10.1016/j.wri.2022.100200.
  • 51. Napiorkowski, J.J., Piotrowski, A.P., Karamuz, E. & Senbeta, T.B. (2023). Calibration of conceptual rainfall-runoff models by selected differential evolution and particle swarm optimization variants. Acta Geophys. 71, pp. 2325-2338. DOI:10.1007/s11600-022-00988-0.
  • 52. Nowogoński, I. (2019). Emporal and spatial variability of rainfall in modelling of stormwater outflows. CEER; 29, 4, pp. 267-278. DOI: 10.2478/ceer-2019-0060.
  • 53. Ogden, F.L., Pradhan, N.R., Downer, C.W. & Zahner, J.A. (2011). Relative importance of impervious area, drainage density, width function, and subsurface storm drainage on flood runoff from an urbanized catchment. Water Resour. Res. 47, W12503. DOI:10.1029/2011WR010550.
  • 54. Palmitessa, R., Grum, M., Engsig-Karup, A.P. & Löwe, R. (2022). Accelerating hydrodynamic simulations of urban drainage systems with physics-guided machine learning. Water Res. 223, 118972 DOI:10.1016/j.watres.2022.118972.
  • 55. Perdikaki, M., Makropoulos, C. & Kallioras, A. (2022). Participatory groundwater modelling for managed aquifer recharge as a tool for water resources management of a coastal aquifer in Greece. Hydrgeol. J. 30, 1, pp. 37-58. DOI: 10.1007/s10040-021-02427-8
  • 56. Qiu, Y., da Silva Rocha Paz, I., Chen, F., Versini, P. A., Schertzer, D. & Tchiguirinskaia, I. (2020). Space variability of hydrological responses of Nature-Based Solutions and the resulting uncertainty. Hydrology and Earth System Sciences Discussions, 1-34. DOI:10.5194/hess-2020-468
  • 57. Rosenzweig, B.R., Cantis, H., Kim, Y., Cohn, A., Grove, K., Brock, J., Yesuf, J., Mistry, P., Welty, C., McPhearson, T., Sauer, J. & Chang, H. (2021). The value of urban flood modeling. Earth’s Future 9, e2020EF001739. DOI:10.1029/2020EF001739.
  • 58. Sharifi, A., Beris, A.T., Javidi, A.S., Nouri, M., Lonbar, A.G. & Ahmadi, M. (2024). Application of artificial intelligence in digital twin models for stormwater infrastructure systems in smart cities. Advanced Engineering Informatics, 61, 102485. DOI:10.1016/j.aei.2024.102485.
  • 59. Sharma, S., Lee, B. S., Nicholas, R. E., & Keller, K. (2021). A safety factor approach to designing urban infrastructure for dynamic conditions. Earth's Future, 9, 12, e2021EF002118. DOI:10.1029/2021EF002118.
  • 60. She, L. & You, X.Y. (2019). A dynamic flow forecast model for urban drainage using the coupled artificial neural network. Water Resour. Manag. 3, pp. 3143-3153. DOI:10.1007/s11269-019-02294-9.
  • 61. Shi, B., Catsamas, S., Kolotelo, P., Wang, M., Lintern, A., Jovanovic, D. & McCarthy, D. T. (2021). A Low-Cost Water Depth and Electrical Conductivity Sensor for Detecting Inputs into Urban Stormwater Networks. Sensors, 21, 9, 3056. DOI:10.3390/s21093056.
  • 62. Szeląg, B., (2013). Influence of the Hydrogramme Shape on the Capacity and Selection of Drains of a Small Retention Reservoir. University of Technology, Kielce. PhD thesis.
  • 63. Szeląg, B., Kiczko, A. & Dąbek, L. (2016). Sensitivity and uncertainty analysis of hydrodynamic model (SWMM) for storm water runoff forecating in an urban basin - A case study, Ochr. Sr., 38, pp. 15-22.
  • 64. Szeląg, B., Majerek, D., Kiczko, A., Łagód, G., Fatone, F. & McGarity, A. (2022a). Analysis of sewer network performance in context of modernization: modeling, sensitivity, uncertainty analysis. Journal of Water Resources Planning and Management. 148: pp[. 1- 12. DOI:10.1061/(ASCE)WR.1943-5452.0001610.
  • 65. Szeląg, B., Suligowski, R., De Paola, F., Siwicki, P., Majerek, D. & Łagód, G. (2022b). Influence of urban catchment characteristics and rainfall origins on the phenomenon of stormwater flooding: case study. Environ. Model. Softw. 150, 105335 DOI:10.1016/j.envsoft.2022.105335.
  • 66. Tabuchi, J.-P., Blanchet, B. & Rocher, V. (2020). Integrated Smart Water Management of the sanitation system of the Greater Paris region. Water International, 45, 6, pp. 574-603. DOI:10.1080/02508060.2020.1830584.
  • 67. Tao, D. Q., Pleau, M., Akridge, A., Fradet, O., Grondin, F., Laughlin, S. & Shoemaker, L. (2020). Analytics and Optimization Reduce Sewage Overflows to Protect Community Waterways in Kentucky. INFORMS Journal on Applied Analytics, 50, 1, pp. 7-20. DOI:10.1287/inte.2019.1022.
  • 68. Ursino, N. (2015). Risk analysis of sustainable urban drainage and irrigation. Advances in Water Resources, 83, pp. 277-284. DOI:10.1016/j.advwatres.2015.06.011.
  • 69. Vojinovic, Z., Kecman, V. & Babovic, V. (2003). Hybrid Approach for Modeling Wet Weather Response in Wastewater Systems. Journal of Water Resources Planning and Management, 129, 6. DOI:10.1061/(ASCE)0733-9496(2003)129:6(511).
  • 70. Wałek, G. (2019). The influence of roads on the formation of surface runoff in the urbanized area on the example of the Silnica River catchment area in Kielce. Jan Kochanowski University Press, Kielce. (in Polish).
  • 71. Wałęga, A., Cupak, A., Michalec, B. & Wachulec, K. (2013). The influence of physical and geographical catchment parameters and precipitation characteristics on the runoff time of concentration. Journal of Civil Engineering, Environment and Architecture, 30, 60, pp. 143-160. DOI:10.7862/rb.2013.44.
  • 72. Wang X., Kvaal K. & Ratnaweera H. (2019). Explicit and interpretable nonlinear soft sensor models for influent surveillance at a full-scale wastewater treatment plant. J. Process Control, 77, pp. 1-6. 10.1016/j.jprocont.2019.03.005 .
  • 73. Wawrzyniak, M. & Wdowikowski, M. (2023). Heavy rainfall modeling in an urban catchment area on the example of Szczecin, Gaz, Woda i Technika Sanitarna. pp.22-30. DOI:10.15199/17.2023.7.4.
  • 74. Willems, P. (2013). Revision of urban drainage design rules after assessment of climate change impacts on precipitation extremes at Uccle, Belgium. Journal of Hydrology, 496, pp. 166-177. DOI:10.1016/j.jhydrol.2013.05.037.
  • 75. Wolfs, V. & Willems, P. (2016). Modular Conceptual Modelling Approach and Software for Sewer Hydraulic Computations. Water Resources Management, 31, 1, pp. 283-298. DOI:10.1007/s11269-016-1524-2.
  • 76. Wong B. P. & Kerkez B. (2016). Real-time environmental sensor data: an application to water quality using web services. Environmental Modelling and Software 84, pp. 505-517. DOI:10.1016/j.envsoft.2016.07.020.
  • 77. Wu, Y., She, D., Xia, J., Song, J., Xiao, T. & Zhou, Y. (2023). The quantitative assessment of impact of pumping capacity and LID on urban flood susceptibility based on machine learning. Journal of Hydrology, 617, 129116. DOI:10.1016/j.jhydrol.2023.129116.
  • 78. Yang, Y. & Chui, T. F. M. (2020). Modelling and interpreting hydrological responses of sustainable urban drainage systems with explainable machine learning methods, Hydrol. And Earth Syst. Sci., 25,11, pp. 5839-5858. DOI:10.5194/hess-2020-460, in review, .
  • 79. Yao, L., Wei, W. & Chen, L. (2016). How does imperviousness impact the urban rainfall-runoff process under various storm cases? Ecological Indicators, 60, pp. 893-905. DOI:10.1016/j.ecolind.2015.08.041 10.1016/j.ecolind.2015.08.041.
  • 80. Yao, Y., Li, J., Jiang, Y. & Huang, G. (2023). Evaluating the response and adaptation of urban stormwater systems to changed rainfall with the CMIP6 projections. Journal of Environmental Management, 347, 1, 119135. DOI:10.1016/j.jenvman.2023.119135.
  • 81. Zawilski, M. & Sakson, G. (2013). Assessment of total suspended solid emission discharged via storm sewerage system from urban areas. OCHRONA SRODOWISKA, 35, 2, pp. 33-40.
  • 82. Zhang, K., Liu, Y., Deletic, A., McCarthy, D. T., Hatt, B. E., Payne, E. G. Chandrasena, G., Li, Y., Pham, T., Jamali, B., Daly, E., Fletcher, T.D. & Lintern, A. (2021). The impact of stormwater biofilter design and operational variables on nutrient removal-a statistical modelling approach. Water Research, 188, 116486.
  • 83. Zhou, Q. (2014). A Review of Sustainable Urban Drainage Systems Considering the Climate Change and Urbanization Impacts. Water, 6, 4, pp. 976-992. DOI:10.3390/w6040976.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79c24b5b-723e-47c2-bcd0-92a071f37b39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.