PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

TiO2 immobilised on biopolymer nanofibers for the removal of bisphenol A and diclofenac from water

Identyfikatory
Warianty tytułu
PL
TiO2 immobilizowany na biopolimerowych nanowłóknach w celu usuwania bisfenolu A i diklofenaku z wody
Języki publikacji
EN
Abstrakty
EN
Recently electrospinning has gained significant attention due to unique possibilities to produce novel natural nanofibers and fabrics with controllable pore structure. The present study focuses on the fabrication of electrospun fibres based on gum karaya (GK), a natural tree gum, with polyvinyl alcohol (PVA), and functionalization of the membrane with TiO2 nanoparticles with further methane plasma treatment. The GK/PVA/TiO2 membrane was analyzed with several techniques including: fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), and water contact angle, in order to characterize its morphological and physicochemical properties. The GK/PVA/TiO2 membrane was further successfully used for the degradation (under UV irradiation) of bisphenol A and diclofenac from aqueous solution. It was also observed that the degradation kinetics of these compounds are faster in comparison to the UV treatment alone.
Rocznik
Strony
417--429
Opis fizyczny
Bibliogr. 38 poz., wykr., tab., rys.
Twórcy
autor
  • Faculty of Energy and Environmental Engineering, Silesian University of Technology, ul. S. Konarskiego 18, 44-100 Gliwice, Poland, phone +48 32 237 24 78
autor
  • Centre for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic, phone +420 485 353 006
autor
  • Centre for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic, phone +420 485 353 006
  • Centre for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic, phone +420 485 353 006
autor
  • Centre for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic, phone +420 485 353 006
autor
  • Centre for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic, phone +420 485 353 006
autor
  • Centre for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic, phone +420 485 353 006
autor
  • Centre for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic, phone +420 485 353 006
Bibliografia
  • [1] Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique. Biotechnol Adv. 2010;28:325-47. DOI: 10.1016/j.biotechadv.2010.01.004.
  • [2] Hwang S, Jeong S. Electrospun nano composites of poly(vinyl pyrrolidone)/nano-silver for antibacterial materials. J Nanosci Nanotechnol. 2011;11:610-613. DOI: 10.1166/jnn.2011.3243.
  • [3] Deniz AE, Vural HA, Ortaç B, Uyar T. Gold nanoparticle/polymer nanofibrous composites by laser ablation and electrospinning. Mater Lett. 2011;65:2941-2943. DOI: 10.1016/j.matlet.2011.06.045.
  • [4] Savva I, Krekos G, Taculescu A, Marinica O, Vekas L, Krasia-Christoforou T. Fabrication and characterization of magnetoresponsive electrospun nanocomposite membranes based on methacrylic random copolymers and magnetite nanoparticles. J Nanomater. 2012;2012:1-9. DOI: 10.1155/2012/578026.
  • [5] Padil VVT, Filip J, Suresh KI, Wacławek S, Černík M. Electrospun membrane composed of poly [acrylonitrile-co-(methyl acrylate)-co-(itaconic acid)] terpolymer and ZVI nanoparticles and its application for the removal of arsenic from water. RSC Adv. 2016;6:110288-110300. DOI: 10.1039/C6RA24036D.
  • [6] Gupta SM, Tripathi M. A review of TiO2 nanoparticles. Chinese Sci Bull. 2011;56:1639-1657. DOI: 10.1007/s11434-011-4476-1.
  • [7] Han H, Bai R. Buoyant photocatalyst with greatly enhanced visible-light activity prepared through a low temperature hydrothermal method. Ind Eng Chem Res. 2009;48:2891-2898. DOI: 10.1021/ie801362a.
  • [8] Hamdi A, Ferreira DP, Ferraria AM, Conceição DS, Vieira Ferreira LF, Carapeto AP, et al. TiO2-CdS nanocomposites: Effect of CdS oxidation on the photocatalytic activity. J Nanomater. 2016;2016:1-11. DOI: 10.1155/2016/6581691.
  • [9] García-Mendoza C, Oros-Ruiz S, Hernández-Gordillo A, López R, Jácome-Acatitla G, Calderón HA, et al. Suitable preparation of Bi2S3 nanorods-TiO2 heterojunction semiconductors with improved photocatalytic hydrogen production from water/methanol decomposition. J Chem Technol Biotechnol. 2016;91:2198-2204. DOI: 10.1002/jctb.4979.
  • [10] Baia L, Orbán E, Fodor S, Hampel B, Kedves EZ, Saszet K, et al. Preparation of TiO2/WO3 composite photocatalysts by the adjustment of the semiconductors’ surface charge. Mater Sci Semicond Process. 2016;42:66-71. DOI: 10.1016/j.mssp.2015.08.042.
  • [11] Han H, Riboni F, Karlicky F, Kment S, Goswami A, Sudhagar P, et al. α-Fe2O3/TiO2 3D hierarchical nanostructures for enhanced photoelectrochemical water splitting. Nanoscale. 2017;9:134-142. DOI: 10.1039/C6NR06908H.
  • [12] Singh N, Pandey V, Singh N, Malik MM, Haque FZ. Application of TiO2/SnO2 nanoparticles in photoluminescence based fast ammonia gas sensing. J Opt. 2017;46:199-203. DOI: 10.1007/s12596-017-0404-3.
  • [13] Li N, Li Y, Li W, Ji S, Jin P. One-step hydrothermal synthesis of TiO2@MoO3 core-shell nanomaterial: microstructure, growth mechanism, and improved photochromic property. J Phys Chem C. 2016;120:3341-3349. DOI: 10.1021/acs.jpcc.5b10752.
  • [14] Jampílek J, Král’ová K. Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecol Chem Eng S. 2015;22:321-361. DOI: 10.1515/eces-2015-0018.
  • [15] Leong S, Razmjou A, Wang K, Hapgood K, Zhang X, Wang H. TiO2 based photocatalytic membranes: A review. J Memb Sci. 2014;472:167-184. DOI: 10.1016/j.memsci.2014.08.016.
  • [16] Bet-moushoul E, Mansourpanah Y, Farhadi K, Tabatabaei M. TiO2 nanocomposite based polymeric membranes: A review on performance improvement for various applications in chemical engineering processes. Chem Eng J. 2016;283:29-46. DOI: 10.1016/j.cej.2015.06.124.
  • [17] Michałowicz J. Bisphenol A - Sources, toxicity and biotransformation. Environ Toxicol Pharmacol. 2014;37:738-758. DOI: 10.1016/j.etap.2014.02.003.
  • [18] Chronopoulou L, Palocci C, Valentino F, Pettiti I, Wacławek S, Černík M, et al. Stabilization of iron (micro)particles with polyhydroxybutyrate for in situ remediation applications. Appl Sci. 2016;6:417. DOI: 10.3390/app6120417.
  • [19] Zhang L, Zeng Y, Cheng Z. Removal of heavy metal ions using chitosan and modified chitosan: A review. J Mol Liq. 2016;214:175-191. DOI: 10.1016/j.molliq.2015.12.013.
  • [20] Alsbaiee A, Smith BJ, Xiao L, Ling Y, Helbling DE, Dichtel WR. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature. 2015;529:190-194. DOI: 10.1038/nature16185.
  • [21] Singha AS, Guleria A. Use of low cost cellulosic biopolymer based adsorbent for the removal of toxic metal ions from the aqueous solution. Sep Sci Technol. 2014;49:2557-2567. DOI: 10.1080/01496395.2014.929146.
  • [22] Jeon C, Park JY, Yoo YJ. Novel immobilization of alginic acid for heavy metal removal. Biochem Eng J. 2002;11:159-166. DOI: 10.1016/S1369-703X(02)00020-7.
  • [23] Thakur S, Kumari S, Dogra P, Chauhan GS. A new guar gum-based adsorbent for the removal of Hg(II) from its aqueous solutions. Carbohydr Polym. 2014;106:276-282. DOI: 10.1016/j.carbpol.2014.02.041.
  • [24] Wacławek S, Chronopoulou L, Petrangeli Papini M, Vinod VTP, Palocci C, Kupčík J, et al. Enhancement of stability and reactivity of nanosized zero-valent iron with polyhydroxybutyrate. Desalin Water Treat. 2017;69. DOI: 10.5004/dwt.2017.0704.
  • [25] Padil VVT, Wacławek S, Senan C, Kupčík J, Pešková K, Černík M, et al. Gum karaya (Sterculia urens) stabilized zero-valent iron nanoparticles: Characterization and applications for the removal of chromium and volatile organic pollutants from water. RSC Adv. 2017;7:13997-14009. DOI: 10.1039/C7RA00464H.
  • [26] Wacławek S, Lutze HV, Grübel K, Padil VVT, Černík M, Dionysiou DD. Chemistry of persulfates in water and wastewater treatment: A review. Chem Eng J. 2017;330:44-62. DOI: 10.1016/j.cej.2017.07.132.
  • [27] Wacławek S, Antoš V, Hrabák P, Černík M. Remediation of hexachlorocyclohexanes by cobalt-mediated activation of peroxymonosulfate. Desalin Water Treat. 2016;57:26274-26279. DOI: 10.1080/19443994.2015.1119757.
  • [28] Yaqoob S, Ullah F, Mehmood S, Mahmood T, Ullah M, Khattak A, et al. Effect of waste water treated with TiO2 nanoparticles on early seedling growth of Zea mays L. J Water Reuse Desalin. 2017. DOI: 10.2166/wrd.2017.163.
  • [29] Yang S, Hai FI, Nghiem LD, Nguyen LN, Roddick F, Price WE. Removal of bisphenol A and diclofenac by a novel fungal membrane bioreactor operated under non-sterile conditions. Int Biodeterior Biodegradation. 2013;85:483-490. DOI: 10.1016/j.ibiod.2013.03.012.
  • [30] Khuzwayo Z, Chirwa EMN. Analysis of catalyst photo-oxidation selectivity in the degradation of polyorganochlorinated pollutants in batch systems using UV and UV/TiO2. South African J Chem Eng. 2017;23:17-25. DOI: 10.1016/j.sajce.2016.12.002.
  • [31] Padil VVT, Senan C, Wacławek S, Černík M. Electrospun fibers based on Arabic, karaya and kondagogu gums. Int J Biol Macromol. 2016;91:299-309. DOI: 10.1016/j.ijbiomac.2016.05.064.
  • [32] Nasikhudin, Ismaya EP, Diantoro M, Kusumaatmaja A, Triyana K. Preparation of PVA/TiO2 Composites Nanofibers by using Electrospinning Method for Photocatalytic Degradation. IOP Conf. Ser. Mater. Sci. Eng. vol. 202, 2017. DOI: 10.1088/1757-899X/202/1/012011.
  • [33] Li J-H, Xu Y-Y, Zhu L-P, Wang J-H, Du C-H. Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance. J Memb Sci. 2009;326:659-666. DOI: 10.1016/j.memsci.2008.10.049.
  • [34] Kovacic M, Juretic Perisic D, Biosic M, Kusic H, Babic S, Loncaric Bozic A. UV photolysis of diclofenac in water; kinetics, degradation pathway and environmental aspects. Environ Sci Pollut Res. 2016;23:14908-14917. DOI: 10.1007/s11356-016-6580-x.
  • [35] Bodzek M, Rajca M. Photocatalysis in the treatment and disinfection of water. Part I. Theoretical backgrounds. Ecol Chem Eng S. 2012;19:489-512. DOI: 10.2478/v10216-011-0036-5.
  • [36] Bohdziewicz J, Kudlek E, Dudziak M. Influence of the catalyst type (TiO2 and ZnO) on the photocatalytic oxidation of pharmaceuticals in the aquatic environment. Desalin Water Treat. 2016;57:1552-1563. DOI: 10.1080/19443994.2014.988411.
  • [37] Wang R, Ren D, Xia S, Zhang Y, Zhao J. Photocatalytic degradation of Bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR). J Hazard Mater. 2009;169:926-932. DOI: 10.1016/j.jhazmat.2009.04.036.
  • [38] Chong MN, Jin B. Photocatalytic treatment of high concentration carbamazepine in synthetic hospital wastewater. J Hazard Mater. 2012;199-200:135-142. DOI: 10.1016/j.jhazmat.2011.10.067.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79c168cf-b88d-40bb-a6db-d818e2bf92fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.