PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Bending, Impact Fracture Behavior and Characteristics of Stainless Steel Clad Plates with Different Rolling Temperature

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The interface characteristics, bending and impact behavior, as well as fracture characteristics of stainless steel clad plates fabricated by vacuum hot rolling at different rolling temperatures of 1100°C, 1200°C and 1300°C are investigated in detail. The interface bonding strength is gradually increased with the increasing rolling temperature due to the sufficient diffusion behavior of alloy element. The bending toughness and impact toughness are gradually decreased, while the bending strength increase with the increase of the rolling temperature, which is attributed to mechanisms of matrix softening and interface strengthening at high rolling temperature. Due to the weak interface at 1100°C, the bending and impact crack propagation path was displaced by delamination cracks, which in turn lead to reduction in stress intensity of the main crack, playing an effective role in toughening the stainless steel clad plates. Moreover, the impact fracture morphologies of clad plates show a typical ductile-brittle transition phenomenon, which is attributed to the matrix softening behavior with the increasing rolling temperature.
Twórcy
autor
  • Hebei University of Technology, Research Institute for Energy Equipment Materials School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interfacial Controlling Technology, Tianjin 300130, China
autor
  • Hebei University of Technology, Research Institute for Energy Equipment Materials School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interfacial Controlling Technology, Tianjin 300130, China
autor
  • Hebei University of Technology, Research Institute for Energy Equipment Materials School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interfacial Controlling Technology, Tianjin 300130, China
autor
  • Hebei University of Technology, Research Institute for Energy Equipment Materials School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interfacial Controlling Technology, Tianjin 300130, China
autor
  • Hebei University of Technology, Research Institute for Energy Equipment Materials School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interfacial Controlling Technology, Tianjin 300130, China
autor
  • Hebei University of Technology, Research Institute for Energy Equipment Materials School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interfacial Controlling Technology, Tianjin 300130, China
autor
  • Hebei University of Technology, Research Institute for Energy Equipment Materials School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interfacial Controlling Technology, Tianjin 300130, China
autor
  • Hebei University of Technology, Research Institute for Energy Equipment Materials School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interfacial Controlling Technology, Tianjin 300130, China
  • Peter the Great Saint-Petersburg Polytechnic University, Materials Science Department, Saint-Petersburg, 195251, Russia
autor
  • Peter the Great Saint-Petersburg Polytechnic University, Materials Science Department, Saint-Petersburg, 195251, Russia
Bibliografia
  • [1] Z. Dhib, N. Guermazi, A. Ktari, M. Gasperini, N. Haddar, Mechanical bonding properties and interfacial morphologies of austenitic stainless steel clad plates. Materials Science and Engineering A 696, 374-386 (2017).
  • [2] H. Song, H. Shin, Y. Shin, Heat treatment of clad steel plate for application of hull structure. Ocean Engineering 122, 278-287 (2016).
  • [3] Z.C. Zhu, Y. He, X.J. Zhang, H.Y. Liu, X. Li, Effect of interface oxides on shear properties of hot-rolled stainless steel clad plate. Materials Science and Engineering A 669, 344-349 (2016).
  • [4] B. Aleman, I. Gutierrez, J.J. Urcola, Interface microstructures in diffusion bonding of titanium alloys to stainless and low alloy steel. Materials Science and Technology 9, 633-641 (1993).
  • [5] J. Pavlovsky, B. Million, K. Ciha, K. Stransky, Carbon redistribution between an austenitic cladding and a ferritic steel for pressure vessels of nuclear reactor. Materials Science and Engineering A 149, 105-110 (1991).
  • [6] L. Li, F.X. Yin, K. Nagai, Progress of laminated materials and clad steels production. Materials Science Forum 675-677, 439-447 (2011).
  • [7] G.M. Xie, Z.G. Luo, G.L. Wang, L. Li, G.D. Wang, Interface characteristic and properties of stainless steel/HSLA steel clad plate by vacuum rolling cladding. Materials Transactions 52, 1709-1712 (2011).
  • [8] A.K. Motarjemi, M. Kocak, V. Ventzke, Mechanical and fracture characterization of a bi-material steel plate. International Journal of Pressure Vessels and Piping 79, 181-191 (2002).
  • [9] Z. Dhib, N. Guermazi, M. Gasperini, N. Haddar, Cladding of low-carbon steel to austenitic stainless steel by hot-roll bonding: microstructure and mechanical properties before and after welding. Materials Science and Engineering A 656, 130-141 (2016).
  • [10] C.X. Chen, M.Y. Liu, B.X. Liu, F.X. Yin, Y.C. Dong, X. Zhang, F.Y. Zhang, Y.G. Zhang, Tensile shear sample design and interfacial shear strength of stainless steel clad plate. Fusion Engineering and Design. 2017. In Press.
  • [11] B.X. Liu, F.X. Yin, X.L. Dai, J.N. He, W. Fang, C.X. Chen,Y.C. Dong, The tensile behaviors and fracture characteristics of stainless steel clad plates with different interfacial status. Materials Science and Engineering A 679, 172-182 (2017).
  • [12] B.X. Liu, L.J. Huang, B. Kaveendran, L. Geng, X.P. Cui, S.L. Wei, F.X. Yin, Tensile and bending behaviors and characteristics of laminated Ti-(TiBw/Ti) composites with different interface status. Composites Part B 108, 377-385 (2017).
  • [13] D.W. Kum, T. Oyama, J. Wadsworth, O.D. Sherby, The impact properties of laminated composites containing ultrahigh carbon (UHC) steels. J. Mech. Phys. Solids 31, 173-186 (1983).
  • [14] M. Koyama, Z. Zhang, M.M. Wang, D. Ponge, D. Raabe, K. Tsuzaki, H. Noguchi, C.C. Tasan, Bone-like crack resistance in hierarchical metastable nanolaminate steel. Science 355, 1055-1057 (2017).
  • [15] B.X. Liu, L.J. Huang, X.D. Rong, L. Geng, F.X. Yin, Bending behaviors and fracture characteristics of laminated ductile-tough composites under different modes. Composites Science and Technology 126, 94-105 (2016).
  • [16] Y. Ohashi, J. Wolfenstine, R. Koch, O.D. Sherby, Fracture behavior of a laminated steel-brass composite in bend tests. Materials Science and Engineering A 151, 37-44 (1992).
  • [17] O.D. Sherby, S. Lee, R. Koch, T. Sumi, J. Wolfenstine, Multi-layered composites based on ultrahigh carbon steel and brass. Materials and Manufacturing Processes 5, 363-376 (1990).
  • [18] Y. Kimura, T. Inoue, F.X. Yin, K. Tsuzaki, Inverse temperature dependence of toughness in an ultrafine grain-structure steel. Science 320, 1057-1060 (2008).
  • [19] J. Cook, J.E. Gordon, C.C. Evans, D.M. Marsh, A Mechanisms for the control of crack propagation in all-brittle systems. Proceedings of Royal Society of London 282, 508-520 (1964).
  • [20] S. Lee, T. Oyama, J. Wolfenstine, O.D. Sherby, Impact properties of a laminated composite based on ultrahigh carbon steel and brass. Materials Science and Engineering A 154, 133-137 (1992).
  • [21] F. Song, Y.L. Bai, Effects of nanostructures on the fracture strength of the interfaces in nacre. J. Mater. Res. 18, 1741-1744 (2003).
  • [22] Y. Jing, Y. Qin, X.M. Zang, Q.Y. Shang, H. Song, A novel reduction-bonding process to fabricate stainless steel clad plate. Journal of Alloys and Compounds 617, 688-698 (2014).
  • [23] Y. Jing, Y. Qin, X.M. Zang, Y.H. Li, The bonding properties andinterfacial morphologies of clad plate prepared by multiple passes hot rolling in a protective atmosphere. Journal of Materials Processing Technology 214 ,1686-1695 (2014).
  • [24] Z.J. Wu, W.F. Peng, X.D. Shu, Influence of rolling temperature on interface properties of the cross wedge rolling of 42CrMo/Q235 laminated shaft. Int. J. Adv. Manuf. Technol. 91, 517-526 (2017).
  • [25] O. Hedayati, N. Korei, M. Adeli, M. Etminanbakhsh, Microstructural evolution and interfacial diffusion during heat treatment of Hastelloy/stainless steel bimetals. Journal of Alloys and Compounds 712, 172-178 (2017).
  • [26] B.X. Liu, L.J. Huang, L. Geng, B. Kaveendran, B. Wang, X.Q. Song, X.P. Cui, Gradient grain distribution and enhanced properties of novel laminated Ti-TiBw/Ti composites by reactionhot pressing. Materials Science & Engineering A 595, 257-265 (2014).
  • [27] L. Kolarik, J. Janovec, M. Kolarikova, P. Nachtnebl, Influence of diffusion welding time on homogenous steel joints. Procedia Engineering 100, 1678-1685 (2015).
  • [28] G.L. Wang, Research on interface inclusions’ evolution mechanism and process control of vacuum hot roll-cladding. Doctor thesis of northeastern university. 2013. 1-162 (in Chinese).
  • [29] X.N. Guo, Y. He. X.J. Zhang, M.N. Li, Microstructure and mechanical properties of binding interface between hot-rolled stainless steel/carbon steel clad plates. Cfhi Technology 52-55, 167 (2015) (in Chinese).
  • [30] R. Ayer, R.R. Mueller, D.P. Leta, W.J. Sisak, Phase transformations at steel/in625 clad interfaces. Metallurgical Transactions A 20, 665-681 (1989).
  • [31] F. Mas, C. Tassin, N. Valle, F. Robaut, F. Charlot, M. Yescas, F. Roch, P. Todeschini, Y. Brechet, Metallurgical characterization of coupled carbon diffusion and precipitation in dissimilar steel welds. Journal of Materials Science 51, 4846-4879 (2016).
  • [32] H.X. Mei, Y.Y. Pang, R. Huang, Influence of interfacial delamination on channel cracking of elastic thin films. International Journal of Fracture 148, 331-342 (2007).
  • [33] J.L. Beuth, S.H. Narayan, Residual stress-driven delamination in deposited multilayers. Int. J. Solids Structures 33, 65-78 (1996).
  • [34] B.S. Li, J.L. Shang, J.J. Guo, H.Z. Fu, In situ observation of fracture behavior of in situ TiBw/Ti composites. Materials Science and Engineering A 383, 316-322 (2004).
  • [35] B.X. Liu, L. Geng, X.L. Dai, F.X. Yin, L.J. Huang, Multiple toughening mechanisms of laminated Ti-TiBw/Ti composites fabricated by diffusion welding 84, 196-201 (2016).
  • [36] C.M. Cepeda-Jimenez, F. Carreno, O.A. Ruano, A.A. Sarkeeva, A.A. Kruglov, R.Ya. Lutfullin, Influence of interfacial defects on the impact toughness of solid state diffusion bonded Ti-6Al-4V alloy based multilayer composites. Materials Science and Engineering A 563, 28-35 (2013).
  • [37] D.R. Lesuer, C.K. Syn, O.D. Sherby, J. Wadsworth, J.J. Lewandowski, W.H. Hunt, Mechanical behavior of laminated metal composites. International Materials Reviews 41, 169-197 (1996)
Uwagi
1. This work is financially supported by the National Natural Science Foundation of China (NSFC) under Grant No. 51601055, the Natural Science Foundation of Hebei Province under Grant No. E2018202245, the Joint Fund for Steel Research of National Natural Science Foundation of China and Baowu Steel Group Corporation Limited (No. U1860114), the Technology Innovation Strategy Funding Project of Hebei Science and Technology Department and Hebei University of Technology (No. 20180106), the “One Belt and One Road” Technology Innovation Cooperation Project of Tianjin (No. 18PTZWHZ00220), the Key Research and Development Program of Hebei Province, China (No. 17391001D).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79c15f73-b0ea-4a1b-87ae-9fd86cfeff06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.