PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-domain analytical rotor model with buried permanent magnets in V-arrangement for high-speed applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Different buried permanent magnet arrangements in rotors are compared based on electrical machines found in literature regarding high-speed capability. An analytical approach is presented to analytically calculate mechanical stresses in the bilateral and central bridge of V arrangements in order to determine the achievable circumferential velocity of a rotor geometry. The mechanical model is coupled to an analytical model which can determine the flux density in the main air gap under consideration of flux leakage within the rotor. The multi-domain model enables the analytical design of high-speed rotors with buried permanent magnets in V-arrangement.
Rocznik
Strony
629--641
Opis fizyczny
Bibliogr. 32 poz., fig., tab.
Twórcy
  • Institute of Electrical Machines (IEM), RWTH Aachen University Schinkelstr. 4, D-52062 Aachen, Germany
  • Institute of Electrical Machines (IEM), RWTH Aachen University Schinkelstr. 4, D-52062 Aachen, Germany
autor
  • Institute of Electrical Machines (IEM), RWTH Aachen University Schinkelstr. 4, D-52062 Aachen, Germany
Bibliografia
  • [1] Binder A., Schneider T., High-Speed Inverter-Fed AC Drives, in International Aegean Conference on Electrical Machines and Power Electronics, IEEE (2007), DOI: 10.1109/ACEMP.2007.4510476.
  • [2] Krings A., Monissen C., Review and Trends in Electric Traction Motors for Battery Electric and Hybrid Vehicles, in International Conference on Electrical Machines, IEEE (2020), DOI: 10.1109/ ICEM49940.2020.9270946.
  • [3] https://www.lucidinsider.com/2022/09/13/lucid-motors-tech-talk-on-drive-unit-motor/, accessed February 2023.
  • [4] Liu C., Chen H., Zhao J., Belahcen A., Research on the Performances and Parameters of Interior PMSM Used for Electric Vehicles, in Transactions on Industrial Electronics, IEEE (2016), DOI: 10.1109/TIE.2016.2524415.
  • [5] Yang Y., Castano S., Yang R., Kasprzak M., Bilgin B., Sathyan A., Dadkhah H., Emadi A., Design and Comparison of Interior Permanent Magnet Motor Topologies for Traction Applications, in Transactions on Transportation Electrification, IEEE (2016), DOI: 10.1109/TTE.2016.2614972.
  • [6] Yu D., Huang X., Fang Y., Zhang J., Design and comparison of interior permanent magnet synchronous traction motors for high speed railway applications, in Workshop on Electrical Machines Design, Control and Diagnosis, IEEE (2017), DOI: 10.1109/WEMDCD.2017.7947724.
  • [7] Chai F., Li Y., Liang P., Pei Y., Calculation of the Maximum Mechanical Stress on the Rotor of Interior Permanent-Magnet Synchronous Motors, in Transactions on Industrial Electronics, IEEE (2016), DOI:10.1109/TIE.2016.2524410.
  • [8] Du J., Wang X., Lv H., Optimization of Magnet Shape Based on Efficiency Map of IPMSM for EVs, in Transactions on Applied Superconductivity, IEEE (2016), DOI: 10.1109/TASC.2016.2594834.
  • [9] Honda Y., Yokote S., Higaki T., Takeda Y., Using the halbach magnet array to develop an ultrahigh speed spindle motor for machine tools, in Industry Applications Conference 32nd IAS Annual, IEEE (1997), DOI: 10.1109/IAS.1997.643008.
  • [10] Lück P., Bennewitz K., Tousen J., Volkswagen’s electric drivetrains of the new modular e-drive kit (MEB), in International VDI Congress, VDI-Berichte Nr. 2354 (2019), DOI: 10.51202/9783181023549-I-515.
  • [11] Huynh T., Chen P., Hsieh M., Analysis and Comparison of Operational Characteristics of Electric Vehicle Traction Units Combining Two Different Types of Motors, in Transactions on Vehicular Technology, IEEE (2022), DOI: 10.1109/TVT.2022.3179868.
  • [12] Hwang Y., Lee J., HEV Motor Comparison of IPMSM with Nd Sintered Magnet and Heavy Rare-Earth Free Injection Magnet in the Same Size, in Transactions on Applied Superconductivity, IEEE (2018),DOI: 10.1109/TASC.2018.2807377.
  • [13] Jiang W., Feng S., Zhang Z., Zhang J., Zhang Z., Study of Efficiency Characteristics of Interior Permanent Magnet Synchronous Motors, in Transactions on Magnetics, IEEE (2018), DOI: 10.1109/TMAG.2018.2847328.
  • [14] Kato T., Limsuwan N., Yu C., Akatsu K., Lorenz R., Rare Earth Reduction Using a Novel Variable Magnetomotive Force Flux-Intensified IPM Machine, in Transactions on Industry Applications, IEEE (2013), DOI: 10.1109/TIA.2013.2283314.
  • [15] Kim S., Kim Y., Lee G., Hong J., A Novel Rotor Configuration and Experimental Verification of Interior PM Synchronous Motor for High-Speed Applications, in Transactions on Magnetics, IEEE (2012), DOI: 10.1109/TMAG.2011.2174045.
  • [16] Kim H., Lee C., Shape Parameters Design for Improving Energy Efficiency of IPM Traction Motor for EV, in Transactions on Vehicular Technology, IEEE (2021), DOI: 10.1109/TVT.2021.3089576.
  • [17] Kollmeyer P., McFarland J., Jahns T., Comparison of class 2a truck electric vehicle drivetrain losses for single- and two-speed gearbox systems with IPM traction machines, in International Electric Machines & Drives Conference, IEEE (2015), DOI: 10.1109/IEMDC.2015.7409261.
  • [18] Li Y., Liu X., Liu Z., Analysis and design of an interior permanent magnet synchronous machine with double-layer PMs for electric vehicles based on multi-physics fields, in International Journal of Computations and Mathematics in Electrical and Electronic Engineering (2018), DOI: 10.1108/COMPEL09-2016-0425.
  • [19] Matsuzaki T., Takemoto M., Ogasawara S., Ota S., Oi K., Matsuhashi D., Operational characteristics of an IPM-type bearingless motor with 2-pole motor windings and 4-pole suspension windings, in Energy Conversion Congress and Exposition, IEEE (2015), DOI: 10.1109/ECCE.2015.7310209.
  • [20] Zhang Z., Liu H., Tengfeiq S., Zhang Q., Performance Evaluation of a 60kW IPM Motor for Medium Commercial EV Traction Application, in Transactions on Electrical Machines and Systems, China Electrotechnical Society (2019), DOI: 10.30941/CESTEMS.2019.00026.
  • [21] Jeong T., Kim W., Kim M., Lee K., Lee J., Han J., Sung T., Kim H., Lee J., Current Harmonics Loss Analysis of 150-kW Traction Interior Permanent Magnet Synchronous Motor Through Co-Analysis of d-q Axis Current Control and Finite Element Method, in Transactions on Magnetics, IEEE (2023), DOI: 10.1109/TMAG.2013.2246552.
  • [22] Dajaku G., Hofmann H., Hetemi F., Dajaku X., Xie W., Gerling D., Comparison of Two Different IPM Traction Machines with Concentrated Winding, in Transactions on Industrial Electronics, IEEE (2016), DOI: 10.1109/TIE.2016.2544720.
  • [23] Binder A., Schneider T., Klohr M., Fixation of buried and surface-mounted magnets in high-speed permanent-magnet synchronous machines, in Transactions on Industry Applications, IEEE (2006), DOI: 10.1109/TIA.2006.876072.
  • [24] Groschup B., Leonardi F., Combined electromagnetic and static structural simulation to reduce the weight of a permanent magnet machine rotor for HEV application, in International Electric Machines and Drives Conference, IEEE (2017), DOI: 10.1109/IEMDC.2017.8002194.
  • [25] Lin R., Sudhoff S., Krousgrill C., Analytical method to compute bridge stresses in V-shape IPMs, in Electric Power Applications Journal, IET (2018), DOI: 10.1049/iet-epa.2018.0053.
  • [26] Polkey W., Pilkey D., Peterson’s stress concentration factors, John Wiley & Sons (2008).
  • [27] Gerlach M., Zajonc M., Ponick B., Mechanical stress and deformation in the rotors of a high-speed PMSM and IM, Elektrotechnik und Informationstechnik Journal, OVE (2021), DOI: 10.1007/s00502-021-00866-5.
  • [28] Mlot A., Korkosz M., Lechowicz A., Podhajecki J., Rawicki S., Electromagnetic analysis, efficiency map and thermal analysis of an 80-kW IPM motor with distributed and concentrated winding for electric vehicle applications, in Archives of Electrical Engineering, vol. 71, no. 4, pp. 992–993 (2022), DOI: 10.24425/aee.2022.142120.
  • [29] Binder A., Elektrische Maschinen und Antriebe, Springer (2012), DOI: 10.1007/978-3-540-71850-5.
  • [30] Macherauch E., Zoch H.-W., Praktikum in Werkstoffkunde, 91 ausführliche Versuche aus wichtigen Gebieten der Werkstofftechnik, Vieweg + Teubner (2011), DOI: 10.1007/978-3-8348-9884-5.
  • [31] Kern A., Leuning N., Hameyer K., Semi-physical demagnetization model for the temperature dependency of permanent magnets in electrical machines, in AIP Advances (2023), DOI: 10.1063/9.0000400.
  • [32] Gerlach M., Zajonc M., Ponick B., Methodology to Evaluate the Mechanical Stress in High Speed Electric Machines with Buried Magnets, in International Symposium on Power Electronics, Electrical Drives, Automation and Motion, IEEE (2020), DOI: 10.1109/SPEEDAM48782.2020.9161946.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79c02d6c-2ecf-4be7-bd46-c9de97201087
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.