PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of strain rate and temperature on the mechanical behaviour of additively manufactured AlSi10Mg alloy – experiment and the phenomenological constitutive modelling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper is related to the material behaviour of additively manufactured samples obtained by the direct metal laser sintering (DMLS) method from the AlSi10Mg powder. The specimens are subjected to a quasi-static and dynamic compressive loading in a wide range of strain rates and temperatures to investigate the influence of the manufacturing process conditions on the material mechanical properties. For completeness, an analysis of their deformed microstructure is also performed. The obtained results prove the complexity of the material behaviour; therefore, a phenomenological model based on the modified Johnson–Cook approach is proposed. The developed model describes the material behaviour with much better accuracy than the classical constitutive function. The resulted experimental testing and its modelling present the potential of the discussed material and the manufacturing technology.
Rocznik
Strony
art. no. e141983
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Department of Protection Technologies, Security & Situational Awareness, French-German Research Institute of Saint-Louis (ISL), 68301 Saint-Louis, France
  • Laboratory of Microstructure Studies and Mechanics of Materials (LEM3), Lorraine University, 57070 Metz, France
  • Laboratory of Microstructure Studies and Mechanics of Materials (LEM3), Lorraine University, 57070 Metz, France
  • Institute of Fundamental Technological Research (IPPT PAN), Polish Academy of Sciences, 02-106 Warsaw, Poland
autor
  • Department of Protection Technologies, Security & Situational Awareness, French-German Research Institute of Saint-Louis (ISL), 68301 Saint-Louis, France
  • Institute of Fundamental Technological Research (IPPT PAN), Polish Academy of Sciences, 02-106 Warsaw, Poland
Bibliografia
  • [1] Scopus database: https://www.scopus.com/results/results.uri?src=s&sot=b&sdt=b&origin=searchbasic&rr=&sl=37&s=TITLE-ABS-KEY(additive%20manufacturing)&searchterm1=additive%20manufacturing&searchTerms=&connectors=&field1=TITLE_ABS_KEY&fields= [Accessed 15 April 2021].
  • [2] J. Kluczyński et al, “Hot isostatic pressing influence on the mechanical properties of selectively laser-melted 316L steel,” Bull. Polish. Acad. Sci. Tech. Sci., vol. 68, pp. 1413–1424, 2020, doi: 10.24425/bpasts.2020.135396.
  • [3] Y. Li and D.Gu, “Thermal behaviour during selective laser melting of commercially pure titanium powder: Numerical simulation and experimental study,” Addit. Manuf., vol. 1–4, pp. 99–109, 2014.
  • [4] J. Kluczynski et al, “Influence of Selective Laser Melting Technological Parameters on the Mechanical Properties of Additively Manufactured Elements Using 316L Austenitic Steel,” Materials, vol. 13, p. 1449, 2020.
  • [5] U.S. Bertoli, A.J. Wolfer, M.J. Matthews, J.-P.R. Dalplanque, and J.M. Schoenung, “On the limitations of Volumetric Energy Density as a design parameter for Selective Laser Melting,” Mater. Des. vol. 113, pp. 331–340, 2017.
  • [6] N. Read, W. Wang, K. Essa, and M.M. Attallah, “Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development,” Mater. Des., vol. 65, pp. 417–424, 2015.
  • [7] E.O. Olakanmi, “Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: Effect of processing conditions and powder properties,” J. Mater. Process. Technol. vol. 213, no. 3, pp. 1387–1405, 2013.
  • [8] J.-P. Kruth, S. Dadbakhsh, B. Vrancken, K. Kempen, J. Vleugels, and J.V. Humbeeck, “Additive Manufacturing of Metals via Selective Laser Melting Process Aspects and Material Developments,” in Additive Manufacturing Innovations, Advances, and Applications, T.S. Srivatsan, T.S. Sudarshan, Eds. Boca Raton: CRC Press by Taylor & Francis Group, 2016, pp. 69–99.
  • [9] V.V. Krishnamurthy, “Additive Manufacturing of Rare Earth Permanent Magnets,” in: Additive Manufacturing Innovations, Advances, and Applications, T.S. Srivatsan, T.S. Sudarshan, Eds. Boca Raton: CRC Press by Taylor & Francis Group, 2016, pp. 413–429.
  • [10] E. Segebade, M. Gerstenmeyer, S. Dietrich, F. Zanger, and V. Schulze, “Influence of anisotropy of additively manufactured AlSi10Mg parts on chip formation during orthogonal cutting,” Proc. CIRP., vol. 82, pp. 113–118, 2019.
  • [11] L. Hitzler et al, “Direction and Location Dependency of Selective Laser Melted AlSi10Mg Specimens,” J. Mater. Process. Technol. vol. 243, pp. 48–61, 2017.
  • [12] L. Delcuse, S. Bahi, U. Gunputh. Rusinek, P. Wood, and M.H. Miguelez, “Effect of powder bed fusion laser melting process parameters, build orientation and strut thickness on porosity, accuracy and tensile properties of an auxetic structure in IN718 alloy,” Addit. Manuf. vol. 36, p. 101339, 2020.
  • [13] K. Zyguła, B. Nosek, H. Pasiowiec, and N. Szysiak, “Mechanical properties and microstructure of AlSi10Mg alloy obtained by casting and SLM technique,” World Sci., vol. 104, pp. 462–472, 2018.
  • [14] N. Takata, H. Kodaira, K. Sekizawa, A. Suzuki, and M. Kobashi, “Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments,” Mater. Sci. Eng. A, vol. 704, pp. 218–228, 2017.
  • [15] NE. Uzan, R. Shneck, O. Yeheskel, and N. Frage, “High-temperature mechanical properties of AlSi10Mg specimens fabricated by additive manufacturing using selective laser melting technologies (AM-SLM),” Addit. Manuf. vol. 24, pp. 257–263, 2018.
  • [16] I. Rosenthal, A. Stern, and N.Frage, “Microstructure and Mechanical Properties of AlSi10Mg Parts Produced by the Laser Beam Additive Manufacturing (AM),” Metallorg. Microstruct. Anal., vol. 3, pp. 448–453, 2014.
  • [17] “EOS GmbH – Electro Optical Systems. Material data sheet. EOS Aluminium AlSi10Mg.” [Online] Available: https://www.eos.info/en/industrial-3d-printing/additive-manufacturing-how-itworks/dmls-metal-3d-printing [Accessed: Dec. 2020].
  • [18] M.M. Attallah, L.N. Carter, Ch. Qoi, N. Read, and W. Wang, “Microstructural and Mechanical Properties of Metal ALM,” in: Laser-based additive manufacturing of metal parts: modeling, optimisation, and control of mechanical properties, L. Bian, N. Shamsaei, J. M. Usher, Eds., Boca Raton: CRC Press, Taylor & Francis, 2018, pp. 59–110.
  • [19] N. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, Ch. Tuck, and R. Hague, “3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting,” Prog. Mater Sci., vol. 106, p. 100578, 2019, doi: 10.1016/ j.pmatsci.2019.100578.
  • [20] “EOS_Aluminium_AlSi10Mg” [Online] Available: https://fathommfg.com/wp-content/uploads/2020/11/EOS_Aluminium_AlSi10Mg_en.pdf [Accessed Jan. 2021].
  • [21] F. Trevisan et al., “On the Selective Laser Melting (SLM) of the AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties,” Materials, vol. 10, p. 76, 2017, doi: 10.3390/ma10010076.
  • [22] B.R. Pęcherski, K. Nalepka, T. Fras, and M. Nowak, “Inelastic flow and failure of metallic solids. Material effort: study across scales,” in Constitutive Relations under Impact Loadings, vol. 552, T., Łodygowski, A. Rusinek, Eds., CISM, Springe, Vienna 2014, pp. 232–267, doi: 10.1007/978-3-7091-1768-2_6.
  • [23] T. Fras, “Modelling of plastic yield surface of materials accounting for initial anisotropy and strength differential effect on the basis of experiments and numerical simulation,” Doctoral Thesis, Lorraine University, AGH University of Science and Technology, France, Poland, 2013, [Online] Available: https://hal.univlorraine.fr/tel-01750617.
  • [24] G. Subhash and G. Ravichandran, “Split–Hopkinson pressure bar testing of ceramics,” in: Mechanical Testing and Evaluation, 8th ed., H. Kuhn, D. Medlin (Eds.), ASM International, 2000, pp. 497–504.
  • [25] A. Rusinek, R. Bernier, R.M. Boumbimba, M. Klosak, T. Jankowiak, and G.Z. Voyiadjis, “New devices to capture the temperature effect under dynamic compression and impact perforation of polymers, application to PMMA,” Polym. Test., vol. 65, pp. 1–9, 2018.
  • [26] T. Fras, Z. Nowak, P. Perzyna, and R.B. Pecherski, “Identification of the model describing viscoplastic behaviour of high strength metals,” Inverse Probl. Sci. Eng., vol. 19, pp. 17–30, 2011.
  • [27] G.J. Johnson and W.H. Cook, “A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures,” in Proceedings of the 7th International Symposium on Ballistics, 1983, pp. 541–547
  • [28] T. Fras, I. Szachogluchowicz, and L. Sniezek, “Ti6Al4V-AA1050-AA2519 explosively-cladded plates under impact loading,” Eur. Phys. J. Spec. Top., vol. 227, pp. 17–27, 2018.
  • [29] M. Stanczak, T. Fras, L. Blanc, P. Pawlowski, and A. Rusinek, “Blast-Induced Compression of a Thin-Walled Aluminium Honeycomb Structure Experiment and Modeling,” Metals, vol. 12, p. 1350, 2019.
  • [30] T. Fras, C.C. Roth, and D. Mohr, “Application of two fracture models in impact simulations,” Bull. Polish. Acad. Sci. Tech. Sci., vol. 68, no. 2, pp. 317–325, doi: 10.24425/bpasts.2020.133120.
  • [31] R. Hill, “A theory of the yielding and plastic flow of anisotropic metals,” in Proc. R. Soc. London, 1948, pp. 281–297.
  • [32] F. Barlat, D.J. Lege, and J.C. Brem, “A six-component yield function for anisotropic materials,” Int. J. Plast., vol. 7, no. 7, pp. 693–712, 1991, doi: 10.1016/0749-6419(91)90052-Z.
  • [33] L. Delcuse, S. Bahi, U. Gunputh, P. Wood, and A. Rusinek, “Constitutive Modelling of Laser Based Powder Bed Fusion Melted Inconel 718 Superalloy over a Wide Range of Strain Rates,” Advances in Manufacturing Technology XXXIV: Proceedings of the 18th International Conference on Manufacturing Research, Incorporating the 35th National Conference on Manufacturing Research, IOS Press, 2021, vol. 15, pp. 198–203, doi: 10.3233/ATDE210036.
  • [34] Y. Zhao et al., “A comparative study on Johnson–Cook and modified Johnson–Cook constitutive material model to predict the dynamic behavior laser additive manufacturing FeCr alloy,” J. Alloys Compd., vol. 723, pp. 179–187, 2017.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79bce1fa-1216-40eb-8cfc-8617fd5330cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.