PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Screen Printed Layers on the Thermal Conductivity of Textile Fabrics

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ warstw naniesionych metodą sitodruku na przewodność cieplną tkanin tekstylnych
Języki publikacji
EN
Abstrakty
EN
In the smart textile field the combination of textile and metallic materials is rising. In order to conduct electricity in textile, different methods are used. This paper deals with a new measuring method to determine the lateral thermal conductivity of a textile fabric. The technique starts by measuring the temperature distribution on the fabric using a thermographic camera. In addition to that, the method outlined in this paper will also allow to determine the change in thermal conductivity when an electric conducting layer has been screen printed on a textile fabric.
PL
W dziedzinie inteligentnych tkanin wzrasta znaczenie połączeń materiałów tekstylnych i metalicznych. W celu przewodzenia energii elektrycznej w tkaninie stosuje się różne metody. W pracy zaprezentowano nową metodę pomiaru w celu określenia bocznej przewodności cieplnej tkaniny tekstylnej. Technika ta oparta jest na pomiarze rozkładu temperatury na tkaninie za pomocą kamery termograficznej. Oprócz tego, metoda opisana w pracy pozwala również na określenie zmiany przewodności cieplnej, gdy warstwa przewodząca prąd elektryczny zostanie wydrukowana na tkaninie.
Rocznik
Strony
70--74
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Polytechnic University of Tirana, Department of Textile and Fashion, Square “Mother Teresa”, Nr. 1, Albania
  • Ghent University, Department of Materials, Textiles and Chemical Engineering, Technologiepark 907, 9052 Zwijnaarde, Belgium
autor
  • Ghent University, Department of Electronics and Information Systems, Sint Pietersnieuwstraat 41, 9000 Ghent, Belgium
autor
  • Ghent University, Department of Materials, Textiles and Chemical Engineering, Technologiepark 907, 9052 Zwijnaarde, Belgium
  • Ghent University, Department of Materials, Textiles and Chemical Engineering, Technologiepark 907, 9052 Zwijnaarde, Belgium
autor
  • Polytechnic University of Tirana, Department of Textile and Fashion, Square “Mother Teresa”, Nr. 1, Albania
Bibliografia
  • 1. Xue P, Tao X, Leung M-Y, Zhang H. Electromechanical properties of conductive fibres, yarns and fabrics. Wearable electronics and photonics 2007; 81-103.
  • 2. Schwarz A, Hakuzimana J, Gasana E, Westbroek P, Van Langenhove L. Gold Coated Polyester Yarn. Advances in Science and Technology 2008; 60: 47-51.
  • 3. Li L, Au W. M, Li Y. A novel design method for an intelligent clothing based on knitting technology and garment design. Textile Research Journal 2009; 79: 1670-1679.
  • 4. Schwarz A, Hakuzimana J, Kaczynska A, Banaszczyk J, Westbroek P, McAdams E, Moody G, Chronis Y, Prinotakis G, De Mey G, Tseles D, Van Langenhove L. Gold coated para-aramid yarns through electroless deposition. Surface & coatings Technology 2010; 204: 1214-1418.
  • 5. Kazani I, Hertleer C, De Mey G, Schwarz A, Guxho G, Van Langenhove L. Electrical conductive textiles obtained by screen printing. FIBRES & TEXTILES in Eastern Europe 2012; 20, 1(90): 57-63.
  • 6. Alagirusamy R, Eichhoff J, Gries T. Coating of conductive yarns for electro-textile applications. Journal of The Textile Institute 2013; 104: 270-277.
  • 7. Hamadani S T A, Potluri P, Fernando A. Thermo-mechanical behaviour of textile heating fabric based on silver coate. Materials 2013; 6: 1072-1089.
  • 8. Schwarz A, Kazani I, Cuny L, Hertleer C, Ghekiere F, De Clercq G, Van Langenhove L. Comparative study on the mechanical properties of elastic, electro-conductive hybrid yarns and their input materials. Textile Research Journal 2011; 81: 1713-1723.
  • 9. Kazani I, Declercq F, Scarpello M L, Hertleer C, Rogier H, Vande Ginste D, De Mey G, Guxho G, Van Langenhove L. Performance study of screen-printed textile antennas after repeated washing. Autex Research Journal 2014; 14: 47-54.
  • 10. Shim B S, Chen W, Doty C. Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Letters 2008; 8: 4151-4157.
  • 11. Huang C T, Shen C L, Tang C F. A wearable yarn-based piezo-resistive sensor. Sensors and Actuators A 2008; 141: 396-403.
  • 12. Li L, Au M. W, Li Y. Design of intelligent garment with transcutaneous electrical nerve stimulation function based on the intarsia knitting technique. Textile Research Journal 2010; 80: 279-286.
  • 13. Senol Y, Akkan T, Bulgun E. Y. Active T-shirt. International Journal of Clothing Science and Technology 2011; 23: 249-257.
  • 14. De Mey G, Ozcelik M, Schwarz A, Kazani I, Hertleer C, Van Langenhove L, Gursoy N. C. Designing of conductive yarn knitted thermal comfortable shirt using battery operated heating system. Tektil ve Konfeksiyon 2014; 1: 64-67.
  • 15. Scarpello M L, Kazani I, Hertleer C, Rogier H, Vande Ginste D. Stability and efficiency of screen-printed wearable and washable antennas. IEEE antennas and wireless propagation letters 2012; 11: 838-841.
  • 16. Locher I, Troster G. Screen-printed textile transmission lines. Textile Research Journal 2007; 77: 837-842.
  • 17. Kim Y, Kim H, Yoo H J. Electrical characterisation of screen-printed circuits on the fabric. IEEE Transactions on Advanced Packaging 2010; 33: 196-205.
  • 18. Merritt C R, Nagle H T, Grant E. Textile-Based Capacitive Sensors for Respiration Monitoring. IEEE Sensors Journal 2009; 9: 71-78.
  • 19. Rybicki T, Stempien Z, Rybicki E, Szugajew L. EMI Shielding Effectiveness of Polyacrylonitrile Fabric With Polyaniline Deposition by Reactive Ink-Jet Printing and Model Approach. IEEE Transactions on electromagnetic compatibility 2016; 58: 1025- 1032.
  • 20. Stempien Z, Rybicki T, Rybicki E, Kozanecki M, Szynkowska M I. In-situ deposition of polyaniline and polypyrrole electroconductive layers on textile surfaces by the reactive ink-jet printing technique. SYNTHETIC METALS 2015; 202: 49-62.
  • 21. Krucinska I, Skrzetuska E, Urbaniak-Domagala W. The Use of Carbon Nanotubes in Textile Printing. Journal of Applied Polymer Science 2011; 121: 483-490.
  • 22. Banerjee D, Chattopadhyay S K, Tuli S. Infrared thermography in material research - A review of textile applications. Indian Journal of Fibre & textile Research 2013; 38: 427- 437.
  • 23. Sezgin H, Bahadir S K Boke Y E, Kalaoglu F. Thermal analysis of e-textile structures using full-factorial experimental design method. Journal of Industrial Textiles 2014; 45, 5: 752-764.
  • 24. Pola T, Häkkinen T, Hännikäinen J, Vanhala J. Thermal Performance Analysis of 13 Heat Sink Materials Suitable for Wereable Electronics Applications. Science and Technology 2013; 3: 67-73.
  • 25. Felczak M, De Mey G, Wiecek B, Michalak M. Lateral and perpendicular thermal conductivitymeasurement on textile double layers. FIBERS AND TEXTILES in Eastern Europe 2015; 23, 4(112): 61-65.
  • 26. Bejan A. Heat transfer, Wiley, New York; 1999. 338-348.
  • 27. Cengel Y. Heat transfer, Mc Graw Hill, Boston; 2003. 130.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79badf97-c8f4-401c-9551-8576e0ab2d82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.