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Abstract
In the smart textile field the combination of textile and metallic materials is rising. In order 
to conduct electricity in textile, different methods are used. This paper deals with a new 
measuring method to determine the lateral thermal conductivity of a textile fabric. The tech-
nique starts by measuring the temperature distribution on the fabric using a thermographic 
camera. In addition to that, the method outlined in this paper will also allow to determine the 
change in thermal conductivity when an electric conducting layer has been screen printed 
on a textile fabric

Key words: screen printing, thermal conductivity, textile, thermographic camera.

Ilda Kazani1,2,*, 
Gilbert De Mey3, 
Carla Hertleer2, 

Lieva Van Langenhove2, 
Genti Guxho1

1 Polytechnic University of Tirana,  
Department of Textile and Fashion, 

Square “Mother Teresa”, Nr. 1, Albania
* email: ikazani@fim.edu.al

2 Ghent University, 
Department of Materials,  

Textiles and Chemical Engineering,  
Technologiepark 907,  

9052 Zwijnaarde, Belgium
3 Ghent University, 

Department of Electronics  
and Information Systems,
 Sint Pietersnieuwstraat 41,  

9000 Ghent, Belgium
However, if one wishes to change the 
layout, new screens have to be made. Ink 
jet printing, on the other hand, is suitable 
for small quantities, and any change in 
the layout can be made through software. 
There is no need to adjust any equipment. 
Ink jet printing also offers the advantage 
that several new materials can be deposit-
ed on textile fabrics [19-21]. With screen 
printing it is mandatory that a printable 
paste be made first. As a consequence, 
the printed material is never 100 % pure 
and always contains a certain amount of 
solvents.

These conductive printed lines showed 
a rather high electric resistivity when 
silver inks were used during the screen 
printing process as compared to the bulk 
material [5]. 

Infrared thermography is rapidly gaining 
popularity amongst researchers in vari-
ous fields like medicine, biology, mate-
rial science, civil engineering, etc. Many 
researchers have explored the potential 
of infrared thermography to investigate 
several thermo-physical phenomena 
like heat transfer, measurement of ther-
mal properties, non-destructive testing 
(NDT), greenhouse gas exchange and 
the diagnosis of diseases, as any process 
that leads to a variation in temperature 
of the object can be subjected to thermo-
graphic investigation [22]. In textile re-
search infrared thermography is applied 
in different applications such as synthetic 
fibre spinning, clothing comfort, non-de-
structive testing of a composite, product 
development, mechanical property and 
failure analysis, thermal property analy-
sis, heat transfer and drying [14, 23-24]. 

In this paper three different textiles were 
used, for which four conductors were 

	 Introduction
The four-point probe method is a flexible 
technique to measure the sheet conduc-
tivity of conducting layers [1].

Over recent years smart textiles have 
become popular as a concept. In order 
to manufacture these wearable textile 
systems, electroconductive textiles are 
needed. Electroconductive textiles can be 
achieved by using conductive fibres, yarn 
coatings, polymers or inks [1-9]. Appli-
cations are found in the medical field 
[10-12] for warning systems [13] and 
body heating [14]. The screen printing of 
conductive inks, a well-known technique 
in microelectronics to make hybrid cir-
cuits, has found use in many smart tex-
tile applications, such as radio-frequency 
identification (RFID tags), wiring boards, 
textile antennas, sensors, etc. [15-18]. 

Screen printing has the major advantage 
of being suitable for mass production. 

screen printed with silver-based inks. In 
order to observe the thermal property 
and heat transfer, a thermographic cam-
era was used, which showed that white 
textile has a higher value of heat transfer 
for all four conductors compared to dark 
textiles. To our knowledge, most papers 
dealing with the thermal conductivity of 
fabrics are limited to heat transfer in the 
direction perpendicular to the fabric. In 
this paper we are oriented towards lateral 
heat conduction in textiles [25].

	 Sample preparation
In this study two woven textiles were se-
lected – Cotton/Polyester (33/67%) and 
Polyamide (100% PA). The physical and 
mechanical properties were determined 
by ISO standards and are listed in Ta-
ble 1.

The conductive ink for these textiles was 
provided by Henkel (Table 2), and the 
screen printed method was used [5].

The design has four lines of different 
width and a square as reference (Fig-
ure 1). In Table 3 the parameters of the 
resistors are given

In order to analyse the thermal properties 
of the printed samples, a thermograph-
ic camera – FLIR T420 25° was used. 
The samples were hung and a current 
was supplied to each printed line sepa-
rately from a DC power supply (EL301R 
Power Supply, Aim & Thurlby Thandar 
Instruments). The measurements were 
completed at room temperature. Each line 
was measured separately from the others. 
On each line two contacts were attached 
with electroconductive glue on both edg-
es of the conductive sample, in order to 
have good electroconductive contact. 
The current supplied was increased from 
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0.200, 0.500 to 1.050 A and the voltage 
measured. To stabilise the temperature, 
the textile was left for 15 minutes, and 
then the temperature was recorded with 
the thermal camera. Data were collected 
for line x (recording line).

Figure 1 shows the schematic layout 
of the fabric used in our experiments. 
The fabric has a height H = 23.7 cm and 
width W = 9.5 cm. Four resistors, R1, R2, 
R3 and R4, each with the same length but 
different width, were made by screen 
printing electric conducting ink on the 
fabric. In Figure 1 the resistors are repre-
sented by the black areas. A small square 
shaped region was also printed as a ref-
erence for the thermographic measure-
ments. At both ends, each resistor was 
equipped with a copper contact to supply 
the electric current. All thermographic re-
cordings shown in this paper were made 
along the x-axis, passing through the 
middle of each resistor and the square-
shaped region.

	 Mathematical model
First of all, a model will be presented 
which will enable us to calculate the 
temperature distribution in the fabric. By 
comparing these theoretical results with 
the experimental data, the thermal pa-
rameters of the fabric will be found, as 
will be outlined further on in this paper. 
More specifically, the thermal conductiv-
ity of the non-printed and printed parts of 
the fabric will be analysed.

Taking into account that the thickness-
es of the fabric and screen printed con-
ductors are much smaller than the other 
dimensions, the temperature distribution 
can be considered as being two dimen-
sional: T(x,y). Due to the fact that the 
heating resistors (R1, R2, R3 and R4) are 
much longer in the y-direction than in the 
x-direction, the problem can be further 
simplified to a one dimensional analysis 
(Figure 1). In other words, the tempera-
ture distribution depends only on x: T(x).
Heat transfer is due to thermal conduc-
tion in the fabric and screen printed con-
ductors. The fabric was hung vertically 
during the experiments so that both sides 

Figure 1. Layout of the fabric with screen printed resistors (R1, R2, R3 and R4) and copper 
contacts. All dimensions in mm.

Table 1. Properties of textiles applied.

Woven textile materials Colour
Yarn density of fabric Type  

of textile 
weave

Basic 
weight, 

g/m²

Specific 
heat,  

J/kg/K
Warp,  

threads/cm
Weft,  

threads/cm

Cotton/Polyester (CO/PES) Dark blue 32 20 Twill 2/1 240 1166

Polyamide (PA) White 45 32 Twill 2/2 99 1600

Table 3. Parameters for the silver conductive screen printed samples.

l1 l2 l3 l4 l5 l6 l7 l8 l9

Pattern 20 5 10 4 5 3 2.5 3 10
Textile 1 (CO/PES) 20.5 4.5 11 3.5 6 3 3 2.5 10
Textile 2 (PA-1) 20 4.5 10.5 3.5 5.5 3.5 2.5 3 10
Textile 3 (PA-2) 20 4.5 10.5 3.5 5.5 3.5 2.5 3 10

Table 2. Properties of silver-based conductive 
ink applied.

Ink type Ink 1
Solid content, % 65

Cure condition, 120 °C 15 minutes

Sheet resistance, Ω/sq/25 μm <0.030

I

y

copper contacts

17 20 105 5 2.5 28.5
4 3

V0

x

R4R3R2R1

H

were cooled equally. From the front and 
rear side of the fabric, heat will be re-
leased by convection to the ambient air 
and by radiation to the surrounding sol-
id objects. The heat transfer equation is 
then given by Equation (1).
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𝐿𝐿 =  𝑘𝑘𝑘𝑘𝑠𝑠
2ℎ                                                    (3) 

The most general solution of (2) is given by: 
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where A and B are two integration constants to be determined by the boundary conditions. If 
we consider only the part on the right side of the heating resistor, it turns out that: 
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is the dominant term, and consequently B exp(x/L) can be neglected. On the left side of the 
heating resistor the opposite conclusion will hold: B exp(x/L) >> A exp(-x/L). In order words 

𝑑𝑑2∆𝑇𝑇
𝑑𝑑𝑑𝑑2 −

∆𝑇𝑇
𝐿𝐿2 = 0                                  (2) 

  (1)

where: k, W/m K – is the thermal conduc-
tivity; ts, m – the thickness of the fabric; 

h, W/m2 K – the total heat transfer coef-
ficient to the ambient; ΔT is the temper-
ature rise above the ambient; p, W/m2 is 
the heat generation in the screen printed 
resistor per unit area.

It was assumed that the ambient air and 
all surrounding objects are at the same 
temperature, the value of which is used 
here as the reference temperature ΔT = 0. 
Factor 2 in Equation (1) is due to the fact 
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that both sides of the fabric are cooled 
equally.

The two dimensional model Equa-
tion (1) assumes implicitly that the fabric 
is a homogeneous material, which is nev-
er the case for a textile fabric made by 
weaving or knitting. Hence the thermal 
conductivity k should be interpreted as 
an average value, usually lower than the 
thermal conductivity of the bulk material 
the yarns are made of.

During all the experiments, only one re-
sistor was powered, so that p = 0 every-
where outside the heated one. If p = 0, 
Equation (1) can be rewritten as:
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where L is the characteristic length, given 
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where A and B are two integration con-
stants to be determined by the boundary 
conditions. If we consider only the part 
on the right side of the heating resistor, it 
turns out that:
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where ΔT is the temperature difference between the plate ( fabric in our case) and  ambient 
air. H has to expressed in m (H = 0.237 m). For a typical value of ΔT = 20 we obtain the 
value hc = 4.51 W/m2 K.
Regarding the heat transfer coefficient by radiation, the following formula is used [26]:

ℎ𝑟𝑟 = 4𝜎𝜎𝑇𝑇0
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where σ = 5.6703 10-8 W/m2 K4 is the Stefan Boltzmann constant. and T0 is the absolute 
ambient temperature expressed in Kelvin (T0 = 273 + 20 = 293 K). We then obtain the value 
hr = 5.70 W/m2 K.

The global heat transfer coefficient h is then found to be [27]:

ℎ = ℎ𝑐𝑐 + ℎ𝑟𝑟 = 4.51 + 5.70 = 10.20 𝑊𝑊
𝑚𝑚2𝐾𝐾                         (9)

It must be remarked here that the fabric was intentionally hung vertically in all our 
experiments, because coefficient hc can then be evaluated accurately. If the fabric had  been 
put on a table, the value of hc would not have been so easily known and the heat transfer by 
conduction through the table would have been difficult to estimate as well due to the 
unpredictable thermal contact resistance between the fabric and  table. 

5. Experimental results 

     (6)

where hc and hr denote the heat transfer 
coefficient due to convection and radia-
tion, respectively.

For a vertical plate of height H, the fol-
lowing correlation can be found in sev-
eral textbooks about natural convection 
cooling [26]:

 

5
 

the temperature drops exponentially if the observation point  moves away from the heat 
source.  
As we are mainly interested in the measurement of  thermal conductivity of the fabric (or  
fabric with a screen printed layer), the exact values of A and B are not required to determine 
the thermal conductivity. On the other hand,  knowledge of the characteristic length L is 
sufficient to provide  the value of thermal conductivity due to (3). Of course, one needs to 
know the value of the heat transfer coefficient h, which will be outlined in the next section. 
The exponential function in (5) suggest that a plot of ΔT(x) vs. x on a semi logarithmic scale 
will be represented as a straight line, the slope of which being 1/L. Further on in this work,
this statement will be verified experimentally. 

4. Determining the global heat transfer coefficient h 

During the experiment, fabric with dimensions 23.7 x 9.5 cm2 was hung vertically. Heat 
losses to the ambient  occurred in two ways: natural convection cooling to ambient air and 
by radiation to  all  surrounding solid objects (walls, ceiling etc). Natural convection means 
that no fan cooling was applied here. Consequently the heat transfer coefficient is then the 
sum of two components: 

ℎ = ℎ𝑐𝑐 + ℎ𝑟𝑟                                              (6)

where hc and hr denote the heat transfer coefficient due to convection and radiation, 
respectively. 
For a vertical plate of height H, the following correlation can be found in several textbooks 
about natural convection cooling [26]:

ℎ𝑐𝑐 = 1.485  ∆𝑇𝑇
𝐻𝐻  

1/4
                                       (7) 

where ΔT is the temperature difference between the plate ( fabric in our case) and  ambient 
air. H has to expressed in m (H = 0.237 m). For a typical value of ΔT = 20 we obtain the 
value hc = 4.51 W/m2 K.
Regarding the heat transfer coefficient by radiation, the following formula is used [26]:

ℎ𝑟𝑟 = 4𝜎𝜎𝑇𝑇0
3                                                     (8)

where σ = 5.6703 10-8 W/m2 K4 is the Stefan Boltzmann constant. and T0 is the absolute 
ambient temperature expressed in Kelvin (T0 = 273 + 20 = 293 K). We then obtain the value 
hr = 5.70 W/m2 K.

The global heat transfer coefficient h is then found to be [27]:

ℎ = ℎ𝑐𝑐 + ℎ𝑟𝑟 = 4.51 + 5.70 = 10.20 𝑊𝑊
𝑚𝑚2𝐾𝐾                         (9)

It must be remarked here that the fabric was intentionally hung vertically in all our 
experiments, because coefficient hc can then be evaluated accurately. If the fabric had  been 
put on a table, the value of hc would not have been so easily known and the heat transfer by 
conduction through the table would have been difficult to estimate as well due to the 
unpredictable thermal contact resistance between the fabric and  table. 

5. Experimental results 

   (7)

where ΔT is the temperature difference 
between the plate (fabric in our case) 
and ambient air. H has to expressed in m 
(H = 0.237 m). For a typical value of ΔT = 20 
we obtain the value hc = 4.51 W/m2 K.

Regarding the heat transfer coefficient by 
radiation, the following formula is used 
[26]:

 

5
 

the temperature drops exponentially if the observation point  moves away from the heat 
source.  
As we are mainly interested in the measurement of  thermal conductivity of the fabric (or  
fabric with a screen printed layer), the exact values of A and B are not required to determine 
the thermal conductivity. On the other hand,  knowledge of the characteristic length L is 
sufficient to provide  the value of thermal conductivity due to (3). Of course, one needs to 
know the value of the heat transfer coefficient h, which will be outlined in the next section. 
The exponential function in (5) suggest that a plot of ΔT(x) vs. x on a semi logarithmic scale 
will be represented as a straight line, the slope of which being 1/L. Further on in this work,
this statement will be verified experimentally. 

4. Determining the global heat transfer coefficient h 

During the experiment, fabric with dimensions 23.7 x 9.5 cm2 was hung vertically. Heat 
losses to the ambient  occurred in two ways: natural convection cooling to ambient air and 
by radiation to  all  surrounding solid objects (walls, ceiling etc). Natural convection means 
that no fan cooling was applied here. Consequently the heat transfer coefficient is then the 
sum of two components: 

ℎ = ℎ𝑐𝑐 + ℎ𝑟𝑟                                              (6)

where hc and hr denote the heat transfer coefficient due to convection and radiation, 
respectively. 
For a vertical plate of height H, the following correlation can be found in several textbooks 
about natural convection cooling [26]:

ℎ𝑐𝑐 = 1.485  ∆𝑇𝑇
𝐻𝐻  

1/4
                                       (7) 

where ΔT is the temperature difference between the plate ( fabric in our case) and  ambient 
air. H has to expressed in m (H = 0.237 m). For a typical value of ΔT = 20 we obtain the 
value hc = 4.51 W/m2 K.
Regarding the heat transfer coefficient by radiation, the following formula is used [26]:

ℎ𝑟𝑟 = 4𝜎𝜎𝑇𝑇0
3                                                     (8)

where σ = 5.6703 10-8 W/m2 K4 is the Stefan Boltzmann constant. and T0 is the absolute 
ambient temperature expressed in Kelvin (T0 = 273 + 20 = 293 K). We then obtain the value 
hr = 5.70 W/m2 K.

The global heat transfer coefficient h is then found to be [27]:

ℎ = ℎ𝑐𝑐 + ℎ𝑟𝑟 = 4.51 + 5.70 = 10.20 𝑊𝑊
𝑚𝑚2𝐾𝐾                         (9)

It must be remarked here that the fabric was intentionally hung vertically in all our 
experiments, because coefficient hc can then be evaluated accurately. If the fabric had  been 
put on a table, the value of hc would not have been so easily known and the heat transfer by 
conduction through the table would have been difficult to estimate as well due to the 
unpredictable thermal contact resistance between the fabric and  table. 

5. Experimental results 

     (8)

where σ = 5.6703 10-8 W/m2 K4 is the 
Stefan Boltzmann constant. and T0 is the 
absolute ambient temperature expressed 
in Kelvin (T0 = 273 + 20 = 293 K). We 
then obtain the value hr = 5.70 W/m2 K.

The global heat transfer coefficient h is 
then found to be [27]:

 

5
 

the temperature drops exponentially if the observation point  moves away from the heat 
source.  
As we are mainly interested in the measurement of  thermal conductivity of the fabric (or  
fabric with a screen printed layer), the exact values of A and B are not required to determine 
the thermal conductivity. On the other hand,  knowledge of the characteristic length L is 
sufficient to provide  the value of thermal conductivity due to (3). Of course, one needs to 
know the value of the heat transfer coefficient h, which will be outlined in the next section. 
The exponential function in (5) suggest that a plot of ΔT(x) vs. x on a semi logarithmic scale 
will be represented as a straight line, the slope of which being 1/L. Further on in this work,
this statement will be verified experimentally. 

4. Determining the global heat transfer coefficient h 

During the experiment, fabric with dimensions 23.7 x 9.5 cm2 was hung vertically. Heat 
losses to the ambient  occurred in two ways: natural convection cooling to ambient air and 
by radiation to  all  surrounding solid objects (walls, ceiling etc). Natural convection means 
that no fan cooling was applied here. Consequently the heat transfer coefficient is then the 
sum of two components: 

ℎ = ℎ𝑐𝑐 + ℎ𝑟𝑟                                              (6)

where hc and hr denote the heat transfer coefficient due to convection and radiation, 
respectively. 
For a vertical plate of height H, the following correlation can be found in several textbooks 
about natural convection cooling [26]:

ℎ𝑐𝑐 = 1.485  ∆𝑇𝑇
𝐻𝐻  

1/4
                                       (7) 

where ΔT is the temperature difference between the plate ( fabric in our case) and  ambient 
air. H has to expressed in m (H = 0.237 m). For a typical value of ΔT = 20 we obtain the 
value hc = 4.51 W/m2 K.
Regarding the heat transfer coefficient by radiation, the following formula is used [26]:

ℎ𝑟𝑟 = 4𝜎𝜎𝑇𝑇0
3                                                     (8)

where σ = 5.6703 10-8 W/m2 K4 is the Stefan Boltzmann constant. and T0 is the absolute 
ambient temperature expressed in Kelvin (T0 = 273 + 20 = 293 K). We then obtain the value 
hr = 5.70 W/m2 K.

The global heat transfer coefficient h is then found to be [27]:

ℎ = ℎ𝑐𝑐 + ℎ𝑟𝑟 = 4.51 + 5.70 = 10.20 𝑊𝑊
𝑚𝑚2𝐾𝐾                         (9)

It must be remarked here that the fabric was intentionally hung vertically in all our 
experiments, because coefficient hc can then be evaluated accurately. If the fabric had  been 
put on a table, the value of hc would not have been so easily known and the heat transfer by 
conduction through the table would have been difficult to estimate as well due to the 
unpredictable thermal contact resistance between the fabric and  table. 

5. Experimental results 

(9)

It must be remarked here that the fabric 
was intentionally hung vertically in all 
our experiments, because coefficient hc 
can then be evaluated accurately. If the 
fabric had been put on a table, the val-
ue of hc would not have been so easily 
known and the heat transfer by conduc-
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Figure 2. Temperature plots when R1, R2, R3 & R4 are heated, 
respectively.
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	 Experimental results
A lot of experiments were carried out, 
all of which gave similar results. Hence 
we will only provide here the results for 
a polyamide substrate, the thermographic 
temperature plots of which recorded are 
shown in Figure 2.

At first, it is noted that the maximum 
temperature is much higher for the thin-
nest resistor R4. This is simply due to 
the fact that the power density per unit 
resistor area was higher for the smaller 
resistors.

Figure 3 displays the same results as 
Figure 2, but this time the temperature 
rise above the ambient ΔT is shown, and 
a logarithmic scale is used. This was 
done in order to verify theoretical for-
mula Equation (5) more easily. Indeed, 
on a semi-log scale, exponential func-
tion Equation (5) will be represented by 
a straight line. A closer look at Figure 3 
reveals that several parts of the experi-
mental graphs can be very well fitted to 
a straight line. It should be noted that 
these fittings can only be applied out-
side the heated resistor, which is due to 
fact that Equation (5) is a solution of 
Equation (2) but not a solution of Equa-
tion (1) as long as p ≠ 0.

In Figure 4 only the curve correspond-
ing to the heating of the thinnest resistor 
R4 has been drawn. Several parts can be 
fitted quite well to straight lines so that 
a good fit with Equation (5) can be per-
formed. If one proceeds from the heated 
resistor R4 towards the left (Figure 1), 
the first region shows a slope corre-
sponding to a constant length of L = 
2.71 mm. Further on, in the screen print-
ed region of the not heated resistor R3, 
a good fit is obtained with L = 5.42 mm. 
The different slope values can only be 
explained by a change in thermal con-
ductivity. If the non-printed textile has 
a thermal conductivity k and the screen 
printed part kink, we obtain from Equa-
tion (3):
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Figure 4. Semi logarithmic plot of the temperature rise due to the heating of R4.
Fittings and corresponding exponential functions are shown. 
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first region shows a slope corresponding to a constant length of L = 2.71 mm. Further on, in
the screen printed region of the not heated resistor R3, a good fit is obtained with L = 5.42 
mm. The different slope values can only be explained by a change in thermal conductivity. If 
the non-printed textile has a thermal conductivity k and the screen printed part kink, we 
obtain from (3): 

𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘 =  5.42

2.71 
2

= 4                               (10)

It means that the lateral thermal conductivity (i.e. parallel to the fabric) is increased 4 times 
due to the screen printed layer. This is not surprising because the screen printed electric 
conducting ink contains silver and carbon particles, which enhance both the electric and 
thermal conductivity. 
If one proceeds to the right, starting from  resistor R4, a good fit is obtained with L = 3.61 
mm. This value is different from what is found on the left side, although both sides were not  
screen printed. This difference in characteristic lengths (2.71 mm vs. 3.61 mm) is due to the 
fact that a textile fabric is not a homogeneous and uniform material from the thermal 
conduction point of view. A woven structure has a lot of very small air cavities between 
neighbouring yarns in both the warp and weft directions. Even a small difference in yarn 
density may give rise to larger or smaller air cavities, which influences the average thermal 
conductivity. If one proceeds further on towards the right, once again a screen printed region 
is obtained give a good fitting with L = 8.13 mm. This time we get: 

𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘 =  8.13

3.1  
2

= 5.07                                 (11)

which is also different from the previous value of 4. Again the non-uniformity of textile 
fabrics is responsible for this result. If there is a bit more free space among neighbouring 
yarns, more ink can be pressed in these air cavities by a squeegee during the screen printing 
process. 
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which is also different from the previ-
ous value of 4. Again the non-uniformity 
of textile fabrics is responsible for this 
result. If there is a bit more free space 
among neighbouring yarns, more ink 
can be pressed in these air cavities by 
a squeegee during the screen printing 
process.

Further away from the heated resistor 
R4, i.e. 0 < x < 35 mm (Figure 4), fitting 
with a straight line is no longer possible. 
The reason is the small temperature rise 
ΔT (< 1 K), which is dependent upon the 
accuracy of the thermographic camera. 
It must be emphasised here that we are 
dealing with temperature differences ΔT. 
The thermographic camera records the 
temperature along the x-axis, then the 
temperature at a point far away from the 

heat source is measured as well and treat-
ed as the reference room temperature. 
The latter value is then subtracted from 
the recorded values. This explains why 
the accuracy drops dramatically as soon 
as one is dealing with a temperature rise 
below one degree.

In Equation (9) we calculated the value 
h = 10.2 W/m2 for the heat transfer coef-
ficient. From Equation (3) we can then 
evaluate the thermal conductivity by:
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Further away from the heated resistor R4, i.e. 0 < x < 35 mm (Figure 4), fitting with a 
straight line is no longer possible. The reason is the small temperature rise ΔT (< 1 K),
which is dependent upon the accuracy of the thermographic camera. It must be emphasised 
here that we are dealing with temperature differences ΔT. The thermographic camera records 
the temperature along the x-axis, then the temperature at a point far away from the heat 
source is measured as well and treated as the reference room temperature. The latter value is 
then subtracted from the recorded values. This explains why the accuracy drops dramatically 
as soon as one is dealing with a temperature rise below one degree. 
In (9) we calculated the value h = 10.2 W/m2 for the heat transfer coefficient. From (3) we 
can then evaluate the thermal conductivity by: 

𝑘𝑘 = 2ℎ𝐿𝐿2

𝑡𝑡𝑠𝑠
                                         (12) 

For L = 2.71 mm e.g. we get k = 0.074 W/m K. This value is less than the thermal 
conductivity of polyamide fibres - 0.24 W/m K. This result is obvious because we  
measuring the thermal conductivity of a fabric not of a single yarn. A fabric is made of 
yarns, but in between them there is a lot of empty space filled with still air, giving rise to a 
lower thermal conductivity. If we use the value L = 5.42 mm for the screen printed region,
we get kink = 0.296 W/m K. This higher value is due to the electric conducting ink which was 
screen printed on the fabric. The ink fills the air gaps between  yarns and, moreover, the 
silver particles in the ink also enhance the thermal conductivity. 

6. Conclusion 

In this paper a method has been presented to measure the thermal conductivity of a fabric. 
The method is based on the use of a screen printed resistor which is heated by an electric 
current. The temperature distribution next to this resistor is recorded with a thermographic 
camera., which is then is compared with the theoretical one, providing us with the thermal 
conductivity of the fabric in the lateral direction.  
The thermal conductivity of a fabric turns out to be less than the conductivity of the bulk 
material the yarns are made of. It was observed that the screen printed layer enhances the 
thermal conductivity of the fabric. 
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which is then compared with the theoret-
ical one, providing us with the thermal 
conductivity of the fabric in the lateral 
direction. 

The thermal conductivity of a fabric 
turns out to be less than the conductivity 
of the bulk material the yarns are made 
of. It was observed that the screen printed 
layer enhances the thermal conductivity 
of the fabric.
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