PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Carbon isotopes in wood combustion/pyrolysis products: experimental and molecular simulation approaches

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A series of laboratory experiments was performed to determine the carbon stable isotopic composition of different combustion/pyrolysis (B/P) products. Variation in the δ13C values of the products was observed, up to 4‰. The differences in the carbon isotopic compositions of the B/P products were dependent on temperature, time and wood type. Comparison of the results for fresh and fossil oak wood suggested that the δ13C differences were the effect of selective decomposition of some wood components during the fossilization process. The temperature dependence of the carbon isotopic composition was linked to variation in the carbon isotopic composition of the main wood components, which each had different levels of thermal stability. Isotopes exchange reactions in between different products can be also considered as possible source of variation of δ13C on temperature. Both these hypotheses were supported by molecular simulations of cellulose and lignin B/P. The results confirm that B/P should be treated as a continuous process, where the results depend on the degree of process development. Natural burning processes are dynamic and burning conditions change rapidly and it is necessary to take care when using combustion products as a paleoenvironmental proxy or as an isotopic characteristic for the identification of source material.
Wydawca
Czasopismo
Rocznik
Strony
111--124
Opis fizyczny
Bibliogr. 63 poz. rys., tab.
Twórcy
  • Institute of Geological Sciences, Polish Academy of Sciences, ul. Twarda 51/55, PL-00-818 Warszawa, Poland
  • Institute of Geological Sciences, Polish Academy of Sciences, ul. Twarda 51/55, PL-00-818 Warszawa, Poland
  • Institute of Geological Sciences, Polish Academy of Sciences, ul. Twarda 51/55, PL-00-818 Warszawa, Poland
autor
  • Institute of Geological Sciences, Polish Academy of Sciences, ul. Twarda 51/55, PL-00-818 Warszawa, Poland
Bibliografia
  • 1. Ascough P, Bird MI, Wormald P, Snape CE and Apperlay D, 2008. Influence of pyrolysis variables and starting material on charcoal stable isotopic and molecular characteristics. Geochemica et Cosmochimica Acta 72: 6090–6102, DOI 10.1016/j.gca.2008.10.009.
  • 2. Baertschi P, 1953. Die fraktionierung der naturlichen kohlenstoffisotopen im kohlendioxydstoffwechsel gruner pflanzen. Helvetica Chimica Acta 36: 773–781, DOI 10.1002/hlca.19530360403.
  • 3. Benington F, Melton C and Watson PJ, 1962. Carbon dating prehistoric soot from Salts Cave, Kentucky. American Antiquity 28: 238–241, DOI 10.2307/278384.
  • 4. Benner R, Fogel ML, Sprague EK and Hodson RE, 1987. Depletion of δ13C in lignin and its implication for stable isotope studies. Nature 329: 708–710, DOI 10.1038/329708a0.
  • 5. Bird MI, 2006. Radiocarbon dating of charcoal. In: Elias SA, ed., The Encyklopedia of Quaternary Science. Elsevier, Amsterdam: 2950– 2957.
  • 6. Bird MI and Ascough PL, 2012. Isotopes in pyrogenic carbon. A review. Organic Geochemistry 42: 1529–1539, DOI 10.1016/j.orggeochem.2010.09.005.
  • 7. Bird MI and Grocke D, 1997. Determination of the abundance and carbon-isotope composition of elemental carbon in sediments. Geochimica et Cosmochimica Acta 61: 3413–3423, DOI 10.1016/S0016-7037(97)00157-9.
  • 8. Bird MI and Cali JA, 1998. A million-year record of fire in sub-Saharan Africa. Nature 394: 767–768, DOI 10.1038/29507.
  • 9. Brodowski S, Amelung W, Haumaier L, Abetz C and Zech W, 2005. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma 128: 116–129, DOI 10.1016/j.geoderma.2004.12.019.
  • 10. Bronk-Ramsey C, 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51: 337–360, DOI 10.1017/S0033822200033865.
  • 11. Cachier H, Bremond MP and Buat-Manard P, 1989. Determination of atmospheric soot carbon with a simple thermal method. Tellus B: Chemical and Physical Meteorology 41B: 379–390, DOI 10.1111/j.1600-0889.1989.tb00316.x.
  • 12. Chang SJ, Jeong GY and Kim SJ, 2008. The origin of black carbon on speleothems in tourist caves in South Korea: Chemical characterization and source discrimination by radiocarbon measurement. Atmospheric Environment 42: 1790–1800, DOI 10.1016/j.atmosenv.2007.11.042.
  • 13. Chenoweth K, Van Duin AC and Goddard WA, 2008. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. The Journal of Physical Chemistry A 112: 1040–1053, DOI 10.1021/jp709896w.
  • 14. Craig H, 1953. The geochemistry of the stable carbon isotopes. Geochimica et Cosmochimica Acta 3: 53–92, DOI 10.1016/0016- 7037(53)90001-5.
  • 15. Craig H, 1954. Carbon-13 in plants and the relationships between carbon-13 and carbon- 14 variations in nature. Journal of Geology 62: 115–149, DOI 10.1086/626141.
  • 16. Cressler WL, 2001. Evidence of earliest known wildfires. Palaios 16: 171–174, DOI 10.1669/0883- 1351(2001)0162.0.CO;2.
  • 17. Currie LA, Eglinton TJ, Benner BA Jr and Pearson A, 1997. Radiocarbon “dating” of individual chemical compounds in atmospheric aerosol: first results comparing direct isotopic and multivariate statistical apportionment of specific polycyclic aromatic hydrocarbons. Nuclear Instruments and Methods in Physics Research B 123: 475–486, DOI 10.1016/S0168-583X(96)00783-5.
  • 18. Czimczik CI, Preston CM, Schmidt MWI, Werner RA and Schultze ED, 2002. Effect of charring on mass, organic carbon and stable isotopic composition of wood. Organic Geochemistry 33: 1207–1223.
  • 19. Czimczik CI, Schmidt MWI and Schulze ED, 2005. Effect of increasing fire frequency on black carbon and organic matter in Podzols of Siberian Scots pine forests. European Journal of Soil Sciences 56: 417–428, DOI 10.1111/j.1365-2389.2004.00665.x.
  • 20. Das O, Wang Y and Hsieh YP, 2010. Chemical and carbon isotopic characteristics of ash and smoke derived from burning of C3 and C4 grasses. Organic Geochemistry 41: 263–269, DOI 10.1016/j.orggeochem.2009.11.001.
  • 21. Dittmar T and Koch BP, 2006. Thermogenic organic matter dissolved in the abyssal ocean. Marine Chemistry 102: 208–217, DOI 10.1016/j.marchem.2006.04.003.
  • 22. Dittmar T and Paeng J, 2009. A heat-induced molecular signature in marine dissolved organic matter. Nature Geoscience 2: 175–179, DOI 10.1038/NGEO440.
  • 23. Eckmeier E, Gerlach R, Skjemstad JO, Ehrmann O and Schmidt MWI, 2007. Only small changes in soil organic carbon and charcoal found one year after experimental slash-and-burn in a temperature deciduous forest. Biogeosciences Discussions 4: 595–614.
  • 24. Fengel D and Munich FRG, 1991. Aging and fossilization of wood and its components. Wood Science and Technology 25: 153–177.
  • 25. Ferrio JP, Alonso N, Lopez JB, Araus JL and Voltas J, 2006. Carbon isotope composition of fossil charcoal reveals aridity changes in the NW Mediterranean basin. Global Change Biology 12: 1253– 1266, DOI 10.1111/j.1365-2486.2006.01170.x.
  • 26. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Montgomery J, Vreven J, Kudin K, Burant J, Millam J, Iyengar S, Tomasi J, Barone V, Mannucci B, Cossi M, Scalmani G, Rega N, Petersson G, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda F, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J, Hratchian H, Cross J, Bakken V, Adamo C, Jramillo J, Gomperts R, Stratmann R, Yazyev O, Austin A, Cammi R, Pomelli C, Ochterski J, Ayala P, Morokuma K, Voth G, Salvador P, Dannenberg J, Zakrzewski V, Dapprich S, Daniels A, Strain M, Frakas O, Malick D, Rabuck A, Raghavachari K, Foresman J, Ortiz J, Cui Q, Baboul A, Clifford S, Cislowski J, Stefanov B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R, Fox D, Keith T, Al-Laham M, Peng C, Nanayakkara A, Challacombe M, Gill P, Johnson B, Chen W, Wong M, Gonzalez C and Pople J, 2004. Gaussian-94, Revision, C.3,. Gaussian, Inc., Pittsburgh, PA.
  • 27. Goldberg ED, 1985. Black Carbon in the Environment. John Wiley, New York: 198.
  • 28. Gradziński M, Hercman H, Bella P, Debaene G, and Nowicki T, 2002. Tmavé laminácie v sintrových nátekoch jaskyne Domica ako indikátor akivít pravekých ľudí (Dark coloured laminae within speleothems of the Domica Cave as an indicator of the prehistoric men activity). Slovenský Kras 40: 41–48 (in Slovak).
  • 29. Gradziński M, Gorny A, Pazdur A and Pazdur, MF, 2003. Origin of black coloured laminae in speleothems from the Kraków‐Wieluń, Upland, Poland. Boreas 32: 532–542, DOI 10.1080/03009480310003414.
  • 30. Gradziński M, Hercman H, Nowak M and Bella P, 2007. Age of black coloured laminae within speleothems from Domica Cave and its significance for dating of prehistoric human settlement. Geochronometria 28: 39–45, DOI 10.2478/v10003-007-0029-7.
  • 31. Haberstroh PR, Brandes JA, Gélinas Y, Dickens AF, Wirick S, Cody G, 2006. Chemical composition of the graphitic black carbon fraction in riverine and marine sediments at sub-micron scales using carbon X-ray spectromicroscopy. Geochimica et Cosmochimica Acta 70: 1483–1494, DOI 10.1016/j.gca.2005.12.001.
  • 32. Hakkou M, Petrissan M, Gerardin P and Zoulalian A, 2006. Investigation of the reason for fungal durability of heat-treated beech wood. Polymer Degradation and Stability 91: 393–397, DOI 10.1016/j.polymdegradstab.2005.04.042.
  • 33. Hall G, Woodborne S and Scholes M, 2008. Stable carbon isotope ratios from archaeological charcoal as palaeoenvironmental indicators. Chemical Geology 247: 384–400, DOI 10.1016/j.chemgeo.2007.11.001.
  • 34. Hill CA, 1982. Origin of black deposits in caves. National Speleological Society Bulletin 44: 15–19.
  • 35. Joeng GY, Kim SJ and Chang SJ, 2003. Black carbon pollution of speleothems by fine urban aerosols in tourist caves. American Mineralogist 88: 1872–1878, DOI 10.2138/am-2003-11-1230.
  • 36. Jones TP and Chaloner WG, 1991. Fossil charcoal, its recognition and palaoatmospheric significance. Palaeogeography, Palaeoclimatol gy, Palaeoecology 97: 39–50, DOI 10.1016/0031- 0182(91)90180-Y.
  • 37. Jones TP, Scott AC and Mattey DP, 1993. Investigations of “fusain transition fossils” from the Lower Carbiniferous: comparison with modern partially charred wood. International Journal of Coal Geology 22: 37–59, DOI 10.1016/0166-5162(93)90037-B.
  • 38. Krull E, Skjemstad J, Graetz D, Grice K, Dunning W, Cook G and Parr J, 2003. 13C depleted charcoal from C4 grasses and the role of occluded gases in phytolith. Organic Geochemistry 34: 1337–1352, DOI 10.1016/S0146-6380(03)00100-1.
  • 39. Lehmann J, Skjemstad J, Sohi C, Carter J, Berson M, Fallon P, Coleman K, Woodbury P and Krull E, 2008. Australin climate-carbon cycle feedback reduced by soil black carbon. Nature Geosciences 1: 832–835.
  • 40. Manino A and Harvey HR, 2004. Black carbon in estuarine and coastal ocean dissolved organic matter. Limnology and Oceanography 49: 735–740, DOI 10.4319/lo.2004.49.3.0735.
  • 41. Masiello CA, 2004. New direction in black carbon organic geochemistry. Marine Chemistry 92: 201–213, DOI 10.1016/j.marchem.2004.06.043.
  • 42. Masiello CA and Druffe ERM, 1998. Black carbon in deep sea sediments. Science 280: 1911–1913, DOI 10.1126/science.280.5371.1911.
  • 43. Masiello CA, Druffel ERM and Currie LA, 2002. Radiocarbon measurements of black carbon in aerosols and ocean sediments. Geochimica et Cosmochimica Acta 66: 1025–1036, DOI 10.1016/S0016-7037(01)00831-6.
  • 44. Nowack B. and Bucheli TD, 2007. Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution: 150, 5–22, DOI 10.1016/j.envpol.2007.06.006.
  • 45. Ochterski JW, 2000. Thermochemistry in gaussian. Gaussian Inc: 1–19.
  • 46. Pawlyta M and Hercman H, 2016. Transmission electron microscopy (TEM) as a tool for identification of combustion products: application to black layers in speleothems. Annales Societatis Geologorum Poloniae 86: 237–248, DOI 10.14241/asgp.2016.004.
  • 47. Petránek J and Pouba Z, 1951. Dating of the development of the Domica Cave, based on the study of the dark zones in the travertine formations. Sborník Ústředního Ústavu Geologického 18: 245– 272. (In Czech, with English summary.)
  • 48. Plimpton P, 1995. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics 117: 1–19, DOI 10.1006/jcph.1995.1039.
  • 49. Poole I, Braadbaart F, Boon J.J and van Bergen PF, 2002. Stable carbon isotope changes during artificial charring of propagules. Organic Geochemistry 33: 1675–1681, DOI 10.1016/S0146- 6380(02)00173-0.
  • 50. Pósfai M and Molnár A, 2000. Aerosol particles in the troposphere: A mineralogical introduction. Environmental mineralogy 2: 197–252.
  • 51. Preston CM and Schmidt MWI, 2006. Black, pyrogenic carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 3: 397–420, DOI 10.5194/bg-3-397-2006.
  • 52. Qian Y, Engel MH and Macko SA, 1992. Stable isotope fractionation of biomonomers during protokerogen formation. Chemical Geology 101: 201–210, DOI 10.1016/0009-2541(92)90002-M.
  • 53. Reimer PJ, Bard E, Bayliss A, Beck WJ, Blackwell PG, Bronk- Ramsey C, Buck CE, Cheng H, Edwards LR, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser FK, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM and van der Plicht J, 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0– 50,000 years cal BP. Radiocarbon 55: 1869–1887, DOI 10.2458/azu_js_rc.55.16947.
  • 54. Rowell RM and LeVan-Green SL, 2005. Thermal Properties. In: Rowell RN, ed., Handbook of Wood Chemistry and Wood Composites. CRC Press: 128–145.
  • 55. Schmidt MWI, Skjemstad JO and Jäger C, 2002. Carbon isotope geochemistry and nanomorphology of soil black carbon: black charnozemic soil in central Europe originate from ancient biomass burning. Global Biogeochemical Cycles 16: 1123, DOI 10.1029/2002GB001939.
  • 56. Shafizadeh F, 1984. The chemistry of pyrolysis and combustion. In: Rowell RM, ed., The chemistry of solid wood. Advances in Chemistry Series 207: 489–529, DOI 10.1021/ba-1984-0207.ch013.
  • 57. Song J, Huang W and Peng P, 2012. Stability and carbon isotope changes of soot and char materials during thermal oxidation: Implication for quantification and source appointment. Chemical Geology 330–331: 158–164, DOI 10.1016/j.chemgeo.2012.08.003.
  • 58. Steelman KL, Rowe MW, Boutton TW, Southon JR, Merrell CL and Hill RD, 2002. Stable isotope and radiocarbon analyses of black deposits associated with pictographs at Little Lost River Cave, Idaho. Journal of Archaeological Sciences 29: 1189–1198, DOI 10.1006/jasc.2001.0791.
  • 59. Turney CSM, Wheeler D and Chivas AR, 2006. Carbon isotope fractionation in wood during carbonization. Geochimica et Cosmochimica Acta 70: 960–964, DOI 10.1016/j.gca.2005.10.031.
  • 60. Vane CH and Abbott GD, 1999. Proxies for land plant biomass: closed system pyrolysis of some methoxyphenols. Organic Geochemistry 30: 1535–1541, DOI 10.1016/S0146-6380(99)00125-4.
  • 61. Watson PJ, 1966. Prehistoric miners of Salt Cave, Kentucky. Archaeology 19: 237–243.
  • 62. Wickman FE, 1952. Variations in the relative abundance of the carbon isotopes in plants. Geochimica et Cosmochimica Acta 2: 243–254, DOI 10.1016/0016-7037(52)90018-5.
  • 63. Zhang T, Li X, Qiao X, Zheng M, Guo L, Song W and Lin W, 2016. Initial mechanisms for an overall behavior of lignin pyrolysis through large-scale ReaxFF molecular dynamics simulations. Energy & Fuels 30: 3140–3150, DOI 10.1021/acs.energyfuels.6b00247.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79b93051-d4cc-4d65-b8b1-381856b55325
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.