PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Fibre Length and Preparation on Mechanical Properties of Carbon Fibre/Polyamide 6 Hybrid Yarns and Composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ długości i przygotowania włókien na mechaniczne właściwości hybrydowych przędz z włókien węglowych i poliamidowych oraz wykonanych z nich kompozytów
Języki publikacji
EN
Abstrakty
EN
The aim of this paper was to investigate the effect of carbon fibre (CF) length and preparation prior to carding on the mechanical properties of hybrid yarns as well as composites consisting of CF and polyamide 6 (PA 6). The hybrid yarns are manufactured using an optimised process route of carding and drawing with a flyer machine from virgin staple CF (40/60/80/100 mm) and PA 6. In order to explore the effect of fibre preparation on the mechanical properties of hybrid yarns as well as composites, virgin staple CF and PA 6 fibres were prepared by varying the mixing type prior to the carding process. For this purpose, the fibres were mixed either by a fibre-opening device or supplied directly to the carding machine without prior mixing. The CF content of the card webs produced is kept at 50 volume %. Hybrid yarns were produced with a twist of 102 twist/m and then thermoplastic uni-directional (UD) composites were manufactured from them. The investigations revealed the influence of the input CF length and mixing type on the mechanical properties of hybrid yarns and thermoplastic UD composites.
PL
Celem badań było stwierdzenie wpływu długości włókien węglowych i ich obróbki przed zgrzebleniem na mechaniczne właściwości przędz hybrydowych/włókno węglowe /poliamid 6/ jak również kompozytów z nich wykonanych. Zmieniano skład mieszanki przed zgrzebleniem. Włókna mieszano lub dostarczano bezpośrednio do zgrzeblenia. Zastosowano zoptymalizowany proces zgrzeblenia i rozciągania z użyciem niedoprzędzarki. Przędze hybrydowe posiadały skręt 102 skręty/m. Z przędz hybrydowych produkowano termoplastyczne kompozyty „jednokierunkowe”. Badania wykazały wpływ parametrów wejściowych na końcowe właściwości kompozytów.
Rocznik
Strony
55--62
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Institute of Textile Machinery and High Performance Material Technology (ITM), Technical University of Dresden, Dresden, Germany, Martin.Hengstermann@tu-dresden.de
  • Institute of Textile Machinery and High Performance Material Technology (ITM), Technical University of Dresden, Dresden, Germany
autor
  • Institute of Textile Machinery and High Performance Material Technology (ITM), Technical University of Dresden, Dresden, Germany
autor
  • Institute of Textile Machinery and High Performance Material Technology (ITM), Technical University of Dresden, Dresden, Germany
Bibliografia
  • 1. BMW AG. Recyclingverfahren. DE 102009023529 A1, 02.10.2012.
  • 2. Lawrence CA, Havis SB and Akonda M. Carbon fibre yarn and method for the production thereof. Patent US2013/0192189 A1, USA, 2013.
  • 3. SGL Carbon SE. Garn oder Nähgarn und Verfahren zum Herstellen eines Garns oder Nähgarns. DE 102010030773 A1, 05.01.2012.
  • 4. Akonda M, Lawrence CA and Weager BM. Recycled carbon fibre-reinforced polypropylene thermoplastic composites. Composites Part A: Applied Science and Manufacturing 2012. 43.1: 79-86.
  • 5. Akonda M, EL-Dessouky HM, Lawrence CA and Weager, B.M. A novel noncrimped thermoplastic fabric prepreg from waste carbon and polyester fibres. Journal of Composite Materials 2013, DOI: 10.1177/0021998313478992.
  • 6. Kobayashi T, Sonobe N and Iwamoto S. Hybrid carbon fibre spun yarn and hybrid carbon fibre spun yarn fabric using the same. Patent US20080152906 A1, USA, 2008.
  • 7. E.I. Du Pont de Nemours and Company (Wilmington, DE). Composites of stretch broken aligned fibers of carbon and glass reinforced resin. US Patent 4759985, 1988.
  • 8. Guevel J, Francois M, Bontemps, G. Carbon fiber yarn. US patent 4825635, 1989.
  • 9. Pepin JN. Continuous/discontinuous filament yarn or tow. US Patent 5487941, 1996.
  • 10. Hansen NW. Stretch breaking of fibers. US Patent 6477740 B1, 2002.
  • 11. Stowe Pharr Mills Inc. High strength spun yarn produced from continuous high-modulus filaments, and process for making same. EP 1774074 B1, 2008.
  • 12. Sigrafil C SBY 70. http://www.sglgroup. com/cms/international/press-lounge/ news/2013/11/11192013_p.html?__locale=en, (accessed 08 January 2015).
  • 13. Sigmund I.: Längeres Leben. Carbon Composites e.V. Magazin Nr. 1 (2016)
  • 14. Schinner G, Brandt J, Richter H.: Recycling Carbon Fibre-Reinforced Thermoplastic Composites. Journal of Thermoplastic Composites Materials, 9(1996)
  • 15. Gulich B and Hofmann M. From black gold to the „golden fleece“, Allgemeiner Vliesstoff-Report 2013, Vol. 4.
  • 16. Mazumdar S.: Composites manufacturing: materials, product, and process engineering. CRC press (2001)
  • 17. Hengstermann M, Abdkader A and Cherif Ch. New yarn constructions from recycled carbon staple fibres and thermoplastic fibres for composite. In: Proceedings. 54. Chemiefasertagung Dornbirn, Dornbirn, Austria, 16.-18. September 2015.
  • 18. Hengstermann M, Raithel N, Abdkader A and Cherif Ch. Spinning of staple hybrid yarn from carbon fibre wastes for lightweight constructions. Presentation /20. Symposium Verbundwerkstoffe und Werkstoffverbunde, Wien, Austria, 01.- 03. July 2015.
  • 19. Hengstermann M, Raithel N, Abdkader A and Cherif Ch. Spinning of staple hybrid yarn from carbon fiber wastes for lightweight constructions. Materials Science Forum 2015, 825-826, DOI: 10.4028/ www.scientific.net/MSF.825-826.60, pp. 695-698.
  • 20. Hengstermann M, Abdkader A and Cherif Ch. Production of innovative spun hybrid yarns made from recyceled carbon fibers for high strength CFRP. In: Proceedings. 15th AUTEX World Textile Conference 2015, Bucharest, Romania, June 2015.
  • 21. Hengstermann M, Raithel N, Abdkader A, Hasan MMB and Cherif Ch. Development of new hybrid yarn construction from recycled carbon fibres (rCF) for high performance composites. Part-I: Basic processing of hybrid CF/PA 6 yarn spinning from virgin CF staple fibres. Textile Research Journal 2015, DOI 0040517515612363. Received 30.05.2016 Reviewed 22.06.2016
  • 22. Krucinska I, Gliscinska E, Mäder E and Hässler R. Evaluation of the influence of glass fibre distribution in polyamide matric during the consolidation process on the mechanical properties of GF/PA6 composites. Fibres and Textiles in Eastern Europe 2009, Vol. 17 No. 1 (72) pp. 81-86.
  • 23. Hengstermann M, Bardl G, Rao H, Abdkader A, Hasan MMB and Cherif Ch. Development of a method for the characterization of fibre length of long staple carbon fibres based on image analysis. Fibres and Textiles in Easter Europe 2016; 24, 4(118): 39-44. DOI: 10.5604/12303666.1207845.
  • 24. Thomason JL, Vlug MA. Influence of Fibre Length and Concentration on the Properties of Glass Fibre-Reinforced Polypropylene: Part 3, Strength and Strain at Failure, Composites Part A 1996, Vol. 27, pp. 1075-1084.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79b8f5fc-5361-4133-8abe-079118903732
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.