PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fruit and vegetable waste management through co-digestion with local market wastewater: operating conditions and system kinetics

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zagospodarowanie odpadów z owoców i warzyw poprzez kofermentację ze ściekami z lokalnych targowisk: warunki eksploatacji i kinetyka systemu
Języki publikacji
EN
Abstrakty
EN
Environmental pollution from fruit and vegetable waste (FVW) produced by local markets in South Africa is inevitable. Nevertheless, the current management strategy of disposing of FVWs in landfills contributes to the emission of greenhouse gases. Therefore, valorizing agricultural waste into bioenergy is critical for achieving zero waste and reducing the carbon footprint. In this study, parametric optimization of the co-digestion of FVWs with market wastewater (MW) was conducted using the Box-Behnken design (BBD) adapted from response surface methodology (RSM). The study identified optimal combinations of process variables, i.e., temperature, pH, hydraulic retention time (HRT), and organic loading rate (OLR), to produce biogas while reducing volatile solids (VS) and chemical oxygen demand (COD) from wastewater. At optimal operating conditions of 40°C, HRT of 10 days, pH of 7.2, and an OLR of 3.98 kg VS·m-3·day-1 , a desirability of 100% was achieved. A biogas production rate of 717 mL·day-1 was reported, with VS and COD removals of 73.37% and 79.24%, respectively. The robustness of the predictive models developed using RSM was corroborated by R2 values greater than 0.9 for all output variables. The Modified Gompertz model was well-fitted to the experimental data, yielding an R2 of 0.995 and a lower root mean square error (RMSE) of 21.08. The findings of the present study suggest that the valorization of FVW through co-digestion with wastewater can be considered a promising, environmentally sustainable technology for agro-waste management and bioenergy production.
PL
Zanieczyszczenie środowiska odpadami z owoców i warzyw powstających na lokalnych targowiskach w Republice Południowej Afryki jest nieuniknione. Co więcej, obecna strategia utylizacji tego rodzaju odpadów przyczynia się do emisji gazów cieplarnianych. Dlatego wykorzystanie odpadów rolniczych do produkcji bioenergii ma kluczowe znaczenie dla osiągnięcia celu „zero odpadów” i zmniejszenia śladu węglowego. W tym badaniu przeprowadzono parametryczną optymalizację kofermentacji odpadów ze ściekami komunalnymi przy użyciu modelu Boxa-Behnkena, zaadaptowanego z metodologii powierzchni odpowiedzi (RSM). W badaniu ustalono optymalne kombinacje zmiennych procesowych, tj. temperatury, pH, hydraulicznego czasu retencji i wskaźnika obciążenia organicznego do produkcji biogazu przy jednoczesnym zmniejszeniu lotnych ciał stałych i chemicznego zapotrzebowania na tlen ze ścieków. W optymalnych warunkach pracy, przy temperaturze 40℃, czasie retencji 10 dni, pH 7,2 i zapotrzebowaniu na tlen rzędu 3,98 kg VS·m-3 dzień-1, uzyskano pożądaną wydajność 100%. Odnotowano wskaźnik produkcji biogazu na poziomie 717 ml·dzień-1 przy czym poziom redukcji lotnych ciał stałych i chemicznego zapotrzebowania na tle wyniosło odpowiednio 73,37% i 79,24%. Solidność modeli predykcyjnych opracowanych przy użyciu RSM została potwierdzona wartościami R2 większymi niż 0,9 dla wszystkich zmiennych wyjściowych. Zmodyfikowany model Gompertza był dobrze dopasowany do danych eksperymentalnych, dając R2 na poziomie 0,995 i niższy średni błąd kwadratowy (RMSE) wynoszący 21,08. Wyniki niniejszego badania pokazują, że zagospodarowanie odpadów z owoców i warzyw poprzez kofermentację ze ściekami można uważać za obiecującą, zrównoważoną środowiskowo technologię zarządzania odpadami rolniczymi i produkcji bioenergii.
Rocznik
Strony
114--134
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
  • Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Steve Campus, S3 L3, P.O. Box 1334, Durban 4000, South Africa
  • Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Steve Campus, S3 L3, P.O. Box 1334, Durban 4000, South Africa
  • Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Steve Campus, S3 L3, P.O. Box 1334, Durban 4000, South Africa
  • Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Steve Campus, S3 L3, P.O. Box 1334, Durban 4000, South Africa
Bibliografia
  • Agrawal, A., Chaudhari, P. K., & Ghosh, P. (2023). Anaerobic digestion of fruit and vegetable waste: a critical review of associated challenges. Environmental Science and Pollution Research, 30(10), 24987-25012. https://doi.org/10.1007/s11356-022-21643-7.
  • Agrawal, A. V., Chaudhari, P. K., & Ghosh, P. (2024). Effect of mixing ratio on biomethane potential of anaerobic co-digestion of fruit and vegetable waste and food waste. Biomass Conversion and Biorefinery, 14(14), 16149-16158. https://doi.org/https://doi.org/10.1007/s13399-023-03737-5.
  • Ajayi-Banji, A., Sunoj, S., Igathinathane, C., & Rahman, S. (2021). Kinetic studies of alkalinepretreated corn stover co-digested with upset dairy manure under solid-state. Renewable Energy, 163, 2198-2207. https://doi.org/https://doi.org/10.1016/j.renene.2020.10.110.
  • Akinbami, O. M., Oke, S. R., & Bodunrin, M. O. (2021). The state of renewable energy development in South Africa: An overview. Alexandria Engineering Journal, 60(6), 5077-5093. https://doi.org/https://doi.org/10.1016/j.aej.2021.03.065.
  • Al-Rubaye, H., Karambelkar, S., Shivashankaraiah, M. M., & Smith, J. D. (2019). Process simulation of two-stage anaerobic digestion for methane production. Biofuels, 10(2), 181-191. https://doi.org/https://doi.org/10.1080/17597269.2017.1309854.
  • Alimohammadi, M., Saeedi, Z., Akbarpour, B., Rasoulzadeh, H., Yetilmezsoy, K., Al-Ghouti, M. A., Khraisheh, M., & McKay, G. (2017). Adsorptive Removal of Arsenic and Mercury from Aqueous Solutions by Eucalyptus Leaves. Water, Air, & Soil Pollution, 228(11), 429. https://doi.org/10.1007/s11270-017-3607-y.
  • Almeida, P., Rodrigues, R., Gaspar, M., Braga, M., & Quina, M. (2021). Integrated management of residues from tomato production: Recovery of value-added compounds and biogas production in the biorefinery context. Journal of Environmental Management, 299, 113505. https://doi.org/https://doi.org/10.1016/j.jenvman.2021.113505.
  • APHA. (2012). Standard Methods for the Examination of Water and Wastewater.
  • Avinash, L. S., & Mishra, A. (2024). Comparative evaluation of Artificial intelligence based models and kinetic studies in the prediction of biogas from anaerobic digestion of MSW. Fuel, 367, 131545. https://doi.org/https://doi.org/10.1016/j.fuel.2024.131545.
  • Aworanti, O. A., Agbede, O. O., Agarry, S. E., Ajani, A. O., Ogunkunle, O., Laseinde, O. T., Rahman, S. M. A., & Fattah, I. M. R. (2023). Decoding Anaerobic Digestion: A Holistic Analysis of Biomass Waste Technology, Process Kinetics, and Operational Variables. Energies, 16(8), 3378. https://www.mdpi.com/1996-1073/16/8/3378.
  • Bong, C. P. C., Lim, L. Y., Lee, C. T., Klemeš, J. J., Ho, C. S., & Ho, W. S. (2018). The characterisation and treatment of food waste for improvement of biogas production during anaerobic digestion - A review. Journal of cleaner production, 172, 1545-1558. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.10.199.
  • Cai, Y., Gallegos, D., Zheng, Z., Stinner, W., Wang, X., Pröter, J., & Schäfer, F. (2021). Exploring the combined effect of total ammonia nitrogen, pH and temperature on anaerobic digestion of chicken manure using response surface methodology and two kinetic models. Bioresource Technology, 337, 125328. https://doi.org/https://doi.org/10.1016/j.biortech.2021.125328.
  • Chow, W. L., Chong, S., Lim, J. W., Chan, Y. J., Chong, M. F., Tiong, T. J., Chin, J. K., & Pan, G.-T. (2020). Anaerobic co-digestion of wastewater sludge: A review of potential co-substrates and operating factors for improved methane yield. Processes, 8(1), 39. https://doi.org/https://doi.org/ 10.3390/pr8010039.
  • Córdoba, V., Fernández, M., & Santalla, E. (2018). The effect of substrate/inoculum ratio on the kinetics of methane production in swine wastewater anaerobic digestion. Environmental Science and Pollution Research, 25, 21308-21317. https://doi.org/https://doi.org/10.1007/s11356-017- 0039-6.
  • de Quadros, T. C. F., Sicchieri, I. M., Perin, J. K. H., Challiol, A. Z., Bortoloti, M. A., Fernandes, F., & Kuroda, E. K. (2023). Valorization of Fruit and Vegetable Waste by Anaerobic Digestion: Definition of Co-substrates and Inoculum. Waste and Biomass Valorization, 14(2), 407-419. https://doi.org/10.1007/s12649-022-01887-7.
  • Dev, S., Saha, S., Kurade, M. B., Salama, E.-S., El-Dalatony, M. M., Ha, G.-S., Chang, S. W., & Jeon, B.-H. (2019). Perspective on anaerobic digestion for biomethanation in cold environments. Renewable and Sustainable Energy Reviews, 103, 85-95. https://doi.org/https://doi.org/10.1016/ j.rser.2018.12.034.
  • dos Santos, S., Chaves, S R M, & van Haandel, A. (2018). Influence of temperature on the performance of anaerobic treatment systems of municipal wastewater. Water SA, 44(2), 211-222. https://doi.org/http://dx.doi.org/10.4314/wsa.v44i2.07.
  • DTIC. (2022). South African fresh produce market inquiry terms of Refeence. (1934). Retrieved from https://www.gov.za/sites/default/files/gcis_document/202203/46093gon1934.pdf.
  • Duong, C. M., & Lim, T.-T. (2023). Use of regression models for development of a simple and effective biogas decision-support tool. Scientific Reports, 13(1), 4933. https://doi.org/10.1038/s41598-023- 32121-6.
  • FAO. (2019). The State of Food and Agriculture 2019. Moving forward on food loss and waste reduction. https://www.fao.org/documents/card/en?details=ca6030en.
  • Fredes, C., Pérez, M. I., Jimenez, M., Reutter, B., & Fernández-Verdejo, R. (2023). Tailored Informational Interventions for Reducing Surplus and Waste of Fruits and Vegetables in a Food Market: A Pilot Study. Foods, 12(12), 2313. https://www.mdpi.com/2304-8158/12/12/2313.
  • Holechek, J. L., Geli, H. M., Sawalhah, M. N., & Valdez, R. (2022). A global assessment: can renewable energy replace fossil fuels by 2050? Sustainability, 14(8), 4792. https://doi.org/https:// doi.org/10.3390/su14084792.
  • Jun, Y., Yifan, W., Qiongyin, W., Shuo, Z., Meizhen, W., Huajun, F., Jun, J., Xiaopeng, Q., Yanfeng, Z., & Ting, C. (2022). Generation of fruit and vegetable wastes in the farmers’ market and its influencing factors: A case study from Hangzhou, China. Waste Management, 154, 331-339. https://doi.org/https://doi.org/10.1016/j.wasman.2022.10.023.
  • Kassim, F. O., Thomas, C. P., & Afolabi, O. O. (2022). Integrated conversion technologies for sustainable agri-food waste valorization: A critical review. Biomass and Bioenergy, 156, 106314. https://doi.org/https://doi.org/10.1016/j.biombioe.2021.106314.
  • Khumalo, S. M., Bakare, B. F., & Rathilal, S. (2023a). Optimization of ciprofloxacin sorption on chitosan-carbon nanotube composite using response surface methodology: Process variables and affinity evaluation. International Journal of Design & Nature and Ecodynamics, 18(6), 1371-1380. https://doi.org/https://doi.org/10.18280/ijdne.180610.
  • Khumalo, S. M., Bakare, B. F., Tetteh, E. K., & Sudesh, R. (2023b). Application of response surface methodology on brewery wastewater treatment using chitosan as a coagulant. Water 15(6), 1176. https://doi.org/https://doi.org/10.3390/w15061176.
  • Kreps, B. H. (2020). The rising costs of fossil‐fuel extraction: an energy crisis that will not go away. American journal of economics and sociology, 79(3), 695-717. https://doi.org/https://doi.org/ 10.1111/ajes.12336.
  • Kuczman, O., Gueri, M. V. D., De Souza, S. N. M., Schirmer, W. N., Alves, H. J., Secco, D., Buratto, W. G., Ribeiro, C. B., & Hernandes, F. B. (2018). Food waste anaerobic digestion of a popular restaurant in Southern Brazil. Journal of cleaner production, 196, 382-389. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.05.282.
  • Leite, V. D., Ramos, R. O., Lopes, W. S., de Araújo, M. C. U., de Almeida, V. E., da Silva Oliveira, N. M., & Viriato, C. L. (2024). Kinetic Modeling of Anaerobic Co-Digestion Of Plant Solid Waste with Sewage Sludge: Synergistic Influences of Total Solids and Substrate Particle Size in Biogas Generation. BioEnergy Research, 17(1), 744-755. https://doi.org/10.1007/s12155-023-10677-5.
  • Lübken, M., Koch, K., Gehring, T., Horn, H., & Wichern, M. (2015). Parameter estimation and longterm process simulation of a biogas reactor operated under trace elements limitation. Applied energy, 142, 352-360. https://doi.org/https://doi.org/10.1016/j.apenergy.2015.01.014.
  • Machate, M. (2020). The conundrums of the estimated magnitude of food waste generated in South Africa. Planning, 15(6), 893-899. https://doi.org/https://doi.org/10.18280/ijsdp.150613.
  • Madondo, N. I., Rathilal, S., & Bakare, B. F. (2022). Utilization of Response Surface Methodology in Optimization and Modelling of a Microbial Electrolysis Cell for Wastewater Treatment Using Box-Behnken Design Method. Catalysts, 12(9), 1052. https://www.mdpi.com/2073-4344/12/9/1052.
  • Mao, C., Feng, Y., Wang, X., & Ren, G. (2015). Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540-555. https://doi.org/https://doi.org/10.1016/B978-0-12-803622-8.00004-5.
  • Mkhize, N., Mjoli, N. S., Khumalo, S. M., Tettteh, E. K., Mahlangu, T.P., & Rathilal, S. (2023). Enhanced Biogas Production through Anaerobic Co-Digestion of Agricultural Wastes and Wastewater: A Case Study in South Africa. International Journal of Energy Production and Management,, 8(2), 123-131. https://doi.org/https://doi.org/10.18280/ijepm.080209.
  • Mlaik, N., Sayadi, S., Masmoudi, M. A., Yaacoubi, D., Loukil, S., & Khoufi, S. (2024). Optimization of anaerobic co-digestion of fruit and vegetable waste with animal manure feedstocks using mixture design. Biomass Conversion and Biorefinery, 14(3), 4007-4016. https://doi.org/10.1007/s13399-022-02620-z.
  • Montgomery, D. C. (2017). Design and Analysis of Experiments. John Wiley & Sons.
  • Morais, N. W. S., Coelho, M. M. H., de Oliveira, M. G., Mourão, J. M. M., Pereira, E. L., & dos Santos, A. B. (2021). Kinetic study of methanization process through mathematical modeling in biochemical methane potential assays from four different inoculants. Water, Air, & Soil Pollution, 232, 1-16. https://doi.org/https://doi.org/10.1007/s11270-021-05387-7.
  • Nie, E., He, P., Zhang, H., Hao, L., Shao, L., & Lü, F. (2021). How does temperature regulate anaerobic digestion? Renewable and Sustainable Energy Reviews, 150, 111453. https://doi.org/https://doi.org/10.1016/j.rser.2021.111453.
  • Nkuna, R., Roopnarain, A., Rashama, C., & Adeleke, R. (2022). Insights into organic loading rates of anaerobic digestion for biogas production: a review. Critical Reviews in Biotechnology, 42(4), 487-507. https://doi.org/10.1080/07388551.2021.1942778.
  • Oyaro, D. K., Oonge, Z. I., & Odira, P. M. (2021). Kinetic modelling of methane production from anaerobic digestion of banana wastes. International Journal of Engineering Research & Technology (IJERT), 10(3), 104-109. https://doi.org/http://www.ijert.org/.
  • Ritchie, H., Rosado, P., & Roser, M. (2023). Fossil fuels. Our world in data. https://doi.org/https:// doi.org/10.3390/pr8010039.
  • Scano, E. A., Asquer, C., Pistis, A., Ortu, L., Demontis, V., & Cocco, D. (2014). Biogas from anaerobic digestion of fruit and vegetable wastes: Experimental results on pilot-scale and preliminary performance evaluation of a full-scale power plant. Energy conversion and Management, 77, 22-30. https://doi.org/https://doi.org/10.1016/j.enconman.2013.09.004.
  • Uddin, M. M., & Wright, M. M. (2022). Anaerobic digestion fundamentals, challenges, and technological advances. Physical Sciences Reviews(0). https://doi.org/https://doi.org/10.1515/psr2021-0068.
  • Ukoba, K., Kunene, T. J., Harmse, P., Lukong, V. T., & Chien Jen, T. (2023). The Role of Renewable Energy Sources and Industry 4.0 Focus for Africa: A Review. Applied Sciences, 13(2), 1074. https://www.mdpi.com/2076-3417/13/2/1074.
  • Wainaina, S., Lukitawesa, Kumar Awasthi, M., & Taherzadeh, M. J. (2019). Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review. Bioengineered, 10(1), 437-458. https://doi.org/10.1080/21655979.2019.1673937.
  • Yahaya, S., & Mardiyya, A. (2019). Review of post-harvest losses of fruits and vegetables. Biomed. J. Sci. Tech. Res, 13(4), 10192-10200. https://doi.org/http://dx.doi.org/10.26717/BJSTR.2019.13. 002448.
  • Zhao, C., Yan, H., Liu, Y., Huang, Y., Zhang, R., Chen, C., & Liu, G. (2016). Bio-energy conversion performance, biodegradability, and kinetic analysis of different fruit residues during discontinuous anaerobic digestion. Waste management, 52, 295-301. https://doi.org/https://doi.org/10.1016/j.wasman.2016.03.028.
  • Zhu, Y., Luan, Y., Zhao, Y., Liu, J., Duan, Z., & Ruan, R. (2023). Current Technologies and Uses for Fruit and Vegetable Wastes in a Sustainable System: A Review. Foods, 12(10), 1949. https://www.mdpi.com/2304-8158/12/10/1949.
  • Zhuo, G., Yan, Y., Tan, X., Dai, X., & Zhou, Q. (2012). Ultrasonic-pretreated waste activated sludge hydrolysis and volatile fatty acid accumulation under alkaline conditions: effect of temperature. Journal of Biotechnology, 159(1-2), 27-31. https://doi.org/https://doi.org/10.1016/j.jbiotec. 2012.01.005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79b85f6d-557d-425d-a92b-6812ff246e08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.