PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Investigation on contact surfaces damage of copper contacts by an electric arc

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electrical contacts are used in general electrical applications such as circuit breakers, switches, relays, connectors, etc. Repeated separations of the parts (anode and cathode) of these contacts under input power can damage their contact materials. The objective of this work is to study the influence of the input electric power (100 W and 256 W) and the contact sizes (hemispherical contacts with diameters 𝐷 = 5 mm and 𝐷 = 8 mm) on the variation of the arc energy and the damage of the contact surfaces by oxidization or by erosion. These parameters are decisive for selecting the best arcresistant contact sample. Experimental results, SEM, and EDX analysis show that high input power leads to more degradation of contact surfaces. Also, the smaller and the larger contact diameters generate similar arcing energies with similar erosion sizes and oxidation rates, but the contact with a small diameter has a higher lifetime (1215 operations) and oxidizes less quickly than the one with a large diameter that has a lower lifetime (374 operations). Experimental and numerical analyses demonstrat that arc mobility is one of several factors influencing the change in contact lifetime.
Rocznik
Strony
251–--271
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Algerian Space Agency-Satellite Development Center Bir El Djir, Oran, Algeria
  • Smart Structure Laboratory, University of Ain Temouchent, Ain Temouchent, Algeria
  • Smart Structure Laboratory, University of Ain Temouchent, Ain Temouchent, Algeria
  • Smart Structure Laboratory, University of Ain Temouchent, Ain Temouchent, Algeria
autor
  • Algerian Space Agency-Satellite Development Center Bir El Djir, Oran, Algeria
Bibliografia
  • [1] R. Holm. Electric Contacts: Theory and Application. Springer-Verlag, Berlin, 1981.
  • [2] P.G. Slade. Electrical Contacts: Principles and Applications. CRC Press, New York, 2014.
  • [3] A. Beloufa. Numerical and experimental analysis of the electrical, mechanical and thermal behavior of electrical contacts in the fields of forces (1 to 100 N) and currents (1 to 100 A). Analyse numérique et expérimentale du comportement électrique, mécanique et thermique des contacts électriques dans les domaines de forces (1 à 100 N) et de courants (1 à 100 A). Ph.D. Thesis, University of Rennes, Rennes, France, 2008 (in French).
  • [4] A. Beloufa. The effect of cable section on the variation of power automotive connector temperature. IEEE Transactions on Components, Packaging and Manufacturing Technology, 9(6):1020–1028, 2019. doi: 10.1109/TCPMT.2019.2914894.
  • [5] A. Beloufa, and M. Amirat. Design and study of new power connector with parallel contact points. Proceeding of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering, 232(14):2014–2021, 2018. doi: 10.1177/0954407018764146.
  • [6] A. Beloufa. Design optimization of electrical power contact using finite element method. ASME Journal of Heat Transfer, 134(1):011401, 2012. doi: 10.1115/1.4004713.
  • [7] A. Beloufa. Conduction degradation by fretting corrosion phenomena for contact sam- ples made of high-copper alloys. Tribology International, 43(11):2110–2119, 2010. doi: 10.1016/j.triboint.2010.06.006.
  • [8] A. Beloufa. Investigation on contact surface damage of automotive connector by fretting cor- rosion. In: M. Hadfield, C.A. Brebbia, J. Seabra, (eds.): Tribology and Design, pages 141–154. WIT Transactions on Engineering Sciences, WIT Press, 2010. doi: 10.2495/TD100131.
  • [9] H. Yang and I. Green. Mitigation schemes for the reduction of fretting wear and fatigue. In:2021 IEEE 66th Holm Conference on Electrical Contacts (HLM), pages 51–56, San Antonio, USA, 24-27 Oct.2021. doi: 10.1109/HLM51431.2021.9671166.
  • [10] P.G. Slade. The Transition from to the metallic phase arc after the rupture of the molten metal bridge for contacts opening in air and vacuum. In: 2008 Proceeding of the 54th IEEE Holm Conference on Electrical Contacts,pages 1–8, Orlando, USA, 27-29 Oct. 2008. doi: 10.1109/HOLM.2008.ECP.14.
  • [11] L. Doublet, N.B. Jemaa, F. Hauner, and D. Jeannot. Make arc erosion and welding tendency under 42 VDC in automotive area. In: Proceeding of the 49th IEEE Holm Conference on Electrical Contacts, pages 158–162, Washington, DC, USA, 08-10 Sept. 2003. doi: 10.1109/HOLM.2003.1246492.
  • [12] S.N. Kharin and M.M. Sarsengeldin. The role of the arc flux and Joule heating in the erosion of electrical contacts. In: 2017 IEEE Holm Conference on Electrical Contacts, pages 293–301, Denver, USA, 10-13 Sept. 2017. doi: 10.1109/HOLM.2017.8088102.
  • [13] F. Pons. Electrical contact material arc erosion: experiments and modeling towards the design of an AgCdO substitute. Ph.D. Thesis, Georgia Institute of Technology, USA, 2010.
  • [14] A. Bonhomme. Wear behavior of the electrical contact pads mad with silver matrix. Ph.D. Thesis, Paris Mining School, Paris, France, 2005 (in French).
  • [15] J.J. Lowke, R. Morrow, and J. Haidar. A simplified unified theory of arcs and their electrodes. Journal of Physics D: Applied Physics. 30(14):2033–2042, 1997. doi: 10.1088/0022 3727/30/14/011.
  • [16] M. Tanaka, K. Yamamoto, S. Tashiro, K. Nakata, E. Yamamoto, K. Yamazaki, K. Suzuki, A.B. Murphy, and J.J. Lowke. Time-dependent calculations of molten pool formation and thermal plasma with metal vapour in gas tungsten arc welding. Journal of Physics D: Applied Physics, 43(43):434009, 2010. doi: 10.1088/0022-3727/43/43/434009.
  • [17] Y. Liu, A. Guha, J. Montanyà, Y. Wang, and Z. Fu. Effects of single impulse current and multiwaveform multipulse currents on aluminum alloy in lightning damage analysis. IEEE Transactions on Plasma Science, 48(4):1146–1153, 2020. doi: 10.1109/TPS.2020.2977930.
  • [18] Y. Liu and Y. Wang. Is indirect electrode a good choice for simulated lightning damage tests? – The effect of metal vapor. IEEE Transactions on Plasma Science, 49(5):1661–1668, 2021. doi: 10.1109/TPS.2021.3073534.
  • [19] S.L. Millen, A. Murphy, G. Abdelal, and G. Catalanotti. Sequential finite element modelling of lightning arc plasma and composite specimen thermal-electric damage. Computers & Structures, 222:48–62, 2019. doi: 10.1016/j.compstruc.2019.06.005.
  • [20] Y. Liu and Y. Wang. Modeling the lightning continuing current electric arc discharge and material thermal damage: Effects of combinations of amplitude and duration. International Journal of Thermal Sciences, 162:106786, 2021. doi: 10.1016/j.ijthermalsci.2020.106786.
  • [21] Y. Wang et al. Characterization and measurement method of DC arc electromagnetic radiation for photovoltaic systems. Transactions of China Electrotechnical Society, 34(14):2913–2921, 2019. doi: 10.19595/j.cnki.1000-6753.tces.180711. (in Chinese).
  • [22] F. Karetta, and M. Lindmayer. Simulation of the gasdynamic and electromagnetic processes in low voltage switching arcs. In: Proceeding of the 42nd IEEE Holm Conference on Electrical Contacts, pages 35–44,Chicago, USA, 16-20 Sept. 1996. doi: 10.1109/HOLM.1996.557177.
  • [23] P.G. Slade. Effect of the electric arc and the ambient air on the contact resistance of silver, tungsten, and silver-tungsten contacts. Journal of Applied Physics, 47(8):3438–3443, 1976. doi: 10.1063/1.323181.
  • [24] D. Grogg, and C. Schrank. Impact of the gas environment on the electric arc. In: 2016 IEEE 62nd Holm Conference on Electrical Contacts, pages 125–128, Clearwater Beach, USA, 09-12 Oct. 2016. doi: 10.1109/HOLM.2016.7780019.
  • [25] P. Verma, O.P. Pandey, and A. Verma. Influence of metal oxides on the arc erosion behaviour of silver metal oxides electrical contact materials. Journal of Materials Science & Technology, 20(1):49–54, 2004.
  • [26] J.F. Llewellyn. The physics of electrical contact phenomena. British Journal of Applied Physics, 12(7):318–322, 1961. doi: 10.1088/0508-3443/12/7/302.
  • [27] A. Farhadi, Y. Zhu, L. Gu, and W. Zhao. Influence of electrode shape and size on electric arc channel and crater. Procedia CIRP, 68:215–220, 2018. doi: 10.1016/j.procir.2017.12.051.
  • [28] E. Yee Kin Choi. Study of arcs and their consequences on electrical power contact materials for DC applications. Ph.D. Thesis, University of Rennes, Rennes, France, 2015 (in French).
  • [29] S. Księżarek, M. Woch, D. Kołacz, M. Kamińska, P. Borkowski, and E. Walczuk. Progress in fabrication technology of silver-based contact materials with particular account of the Ag-Re and Ag-SnO2Bi2O3 composites. Archives of Metallurgy and Materials, 59(2):501–508, 2014. doi: 10.2478/amm-2014-0083.
  • [30] M. Mohammadhosein, K. Niayesh, A.A.S. Akmal, and H. Mohseni. Impact of surface mor- phology on arcing induced erosion of CuW contacts in gas circuit breakers. In: 2018 IEEE Holm Conference on Electrical Contacts, pages 99–105, Albuquerque, USA, 14-18 Oct. 2018. doi: 10.1109/HOLM.2018.8611731.
  • [31] M. Abbaoui, A. Lefort, D. Sallais, and N.B. Jemaa. Theoretical and experimental determination of erosion rate due to arcing in electrical contacts. In: Proceeding of the 52nd IEEE Holm Conference on Electrical Contacts, pages 103–109, Montreal, Canada, 25-27 Sept. 2006. doi: 10.1109/HOLM.2006.284072.
  • [32] D. Sallais, N.B. Jemaa, and E. Carvou. An arc study at high DC current levels in automotive applications. IEEE Transactions on Components, Packaging and Manufacturing Technology, 30(3):540–545, 2007. doi: 10.1109/TCAPT.2007.903499.
  • [33] N.B. Jemaa, J.L. Queffelec, and D. Travers. Some investigations on slow and fast arc voltage fluctuations for contact materials proceeding in various gases and direct current. In: Thirty- Sixth IEEE Conference on Electrical Contacts, pages 18–24, Montreal, Canada, 1990. doi: 10.1109/HOLM.1990.112989.
  • [34] P.J. Boddy and T. Utsumi. Fluctuation of arc potential caused by metal-vapor diffusion arcs in air. Journal of Applied Physics, 42(9):3369–3373, 1971. doi: 10.1063/1.1660739.
  • [35] J.D. Lambert. The oxidation of carbon. Transactions of the Faraday Society, 32:452–462, 1936.
  • [36] D.Y. Cho, K.J. Kim, K.S. Lee, M. Lübben, S. Chen, and I. Valov. Chemical influence of carbon interface layers in metal/oxide resistive switches. ACS Applied Materials & Interfaces, 15(14):18528–18536, 2023. doi: 10.1021/acsami.3c00920.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79b2d520-b382-4589-9887-7e4f99110cd5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.