PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of silage additive on the kinetics of biogas production from lignocellulosic perennial crops

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to assess the effect of silage additive containing heterofermentative lactic acid bacteria (LAB) strain of Lactobacillus buchneri species on ensiling quality, as well as methane yield and the kinetics of biogas production from ensiled perennial energy grasses: Miscanthus × giganteus (miscanthus), Spartina pectinata (cordgrass), Panicum virgatum (switchgrass) and Andropogon gerardii (big bluestem). The listed plants are not commonly used for biogas production, their susceptibility to ensiling is also little known, hence the need to investigate their suitability for these processes. Effective methods for increasing the biogas yield from biomass are still demand, hence the research on the use of LAB for this purpose. After harvesting the grasses were cut and ensiled in barrels with and without (controls) the usage of commercial silage inoculant containing Lactobacillus buchneri LN40177. After 90 days of ensiling obtained silages were analysed in order to compare their chemical composition: organic acids content, the loss of dry matter, the differences in particular fibres composition. The silages were then subjected to methane fermentation using OxiTop® sensors and exposed to air in order to check their aerobic stability. The silages prepared with LAB additive had higher concentration of acetic acid than the control silages prepared without LAB addition, which contributed to increased aerobic stability but had no effect on the methane yield of miscanthus, switchgrass and big bluestem. Using the microbial inoculant during ensiling had beneficial effect in terms of reducing the duration of biogas production process from obtained silages: lag phase was shortened, daily biogas production rate was increased and 90% of biogas was produced in a shorter period of time compared to the control silages from investigated grasses. The modified Gompertz model well reflected the kinetics of biogas production process.
Wydawca
Rocznik
Tom
Strony
58--66
Opis fizyczny
Bibliogr. 37 poz., tab., wykr.
Twórcy
  • Warsaw University of Life Sciences, Institute of Biology, 159 Nowoursynowska St, 02-776 Warsaw, Poland
  • Warsaw University of Life Sciences, Institute of Mechanical Engineering, Warsaw, Poland
  • Warsaw University of Life Sciences, Institute of Biology, 159 Nowoursynowska St, 02-776 Warsaw, Poland
Bibliografia
  • ADESOGAN A., SALAWU M. 2002. The effect of different additives on the fermentation quality, aerobic stability and in vitro digestibility of pea/wheat bi-crop silages containing contrasting pea to wheat ratios. Grass and Forage Science. Vol. 57 p. 25–32. DOI 10.1046/j.1365-2494.2002.00298.x.
  • ASABE Standards (2008) S358.2: Moisture Measurement-Forages.
  • BILANDZIJA N., JURISIC V., VOCA N. 2017. Combustion properties of Miscanthus × giganteus biomass – Optimization of harvest time. Journal of the Energy Institute. Vol. 90(4) p. 528–533. DOI 10.3390/en11123398.
  • BORREANI G., TABACCO E., SCHMIDT R., HOLMES B., MUCK R. 2018. Silage review: Factors affecting dry matter and quality losses in silages. Journal of Dairy Science. Vol. 101 p. 3952–3979. DOI 10.3168/jds.2017-13837.
  • BUDIYONO, WIDIASA I.N., JOHARI S., SUNARSO 2010. The kinetic of biogas production rate from cattle manure in batch mode. International Journal of Chemical and Molecular Engineering. Vol. 3(1) p. 39–44. DOI 10.5281/zenodo.1074968.
  • DEEPANRAJ B., VELMURUGAN S., JAYARAJ S. 2015. Experimental and kinetic study on anaerobic digestion of food waste: The effect of total solids and pH. Journal of Renewable and Sustainable Energy. Vol. 7(6), 063104. DOI 10.1063/1.4935559.
  • EMERY I., DUNN J., HAN J., WANG M. 2014. Biomass storage options influence net energy and emission of cellulosic ethanol. BioEnergy Research. Vol. 8(2). DOI 10.1007/s12155-014-9539-0.
  • FENG L., KRISTENSEN E., MOSET V., WARD A.J., MØLLER H. 2018. Ensiling of tall fescue for biogas production: Effect of storage time, additives and mechanical pretreatment. Energy for Sustainable Development. Vol. 47 p. 143–148. DOI 10.1016/j.esd.2018.10.001.
  • FILYA I. 2003. The effect of Lactobacillus buchneri and Lactobacillus plantarum on the fermentation, aerobic stability, and ruminal degradability of low dry matter corn and sorghum silages. Journal of Dairy Science. Vol. 86(11) p. 3575–3581. DOI 10.3168/jds.S0022-0302(03)73963-0.
  • HERRMANN C., HEIERMANN M., IDLER C. 2011. Effect of ensiling, silage additives and storage period on methane formation of biogas crops. Bioresource Technology. Vol. 102 p. 5153–5161. DOI 10.1016/j.biortech.2011.01.012.
  • JANKEA L., MC CABEB B.K., HARRISB P., HILLB A., LEEB S., WEINRICHA S., MARCHUKB S., BAILLIE C. 2019. Ensiling fermentation reveals pre-treatment effects for anaerobic digestion of sugarcane biomass: An assessment of ensiling additives on methane potential. Bioresource Technology. Vol. 279 p. 398–403. DOI 10.1016/j.biortech.2019.01.143.
  • KAFLE G., KIM S. 2013. Effects of chemical compositions and ensiling on the biogas productivity and degradation rates of agricultural and food processing by-products. Bioresource Technology. Vol. 142 p. 553–561. DOI 10.1016/j.biortech.2013.05.018.
  • KALAČ P. 2011. The required characteristics of ensiled crops used as a feedstock for biogas production: A review. Journal of Agrobiology. Vol. 28 p. 85–96. DOI 10.2478/v10146-011-0010-y.
  • KHALID K. 2011. An overview of lactic acid bacteria. International Journal of Biosciences. Vol. 1(3) p. 1–13.
  • KIM J., KWON C., SHIN C., KIM C. 2005. Effect of location, year and variety on forage yield and quality of winter rye. Asian-Australasian Journal of Animal Sciences. Vol. 18(7) p. 997–1002. DOI 10.5713/ajas.2005.997.
  • KUPRYŚ-CARUK M., CHOIŃSKA R., DEKOWSKA A., PIASECKA-JÓŹWIAK K. 2021. Silage quality and biogas production from Spartina pectinate L. fermented with a novel xylan-degrading strain of Lactobacillus buchneri M B/00077. Scientific Reports. Vol 11(1), 13175. DOI 10.1038/s41598-021-92686-y.
  • KUPRYŚ-CARUK M., PODLASKI S., KOTYRBA D. 2019. Influence of double-cut harvest system on biomass yield, quality and biogas production from C4 perennial grasses. Biomass and Bioenergy. Vol. 130, 105376. DOI 10.1016/j.biombioe.2019.105376.
  • LATINWO G., AGARRY S. 2015. Modelling the kinetics of biogas generation from mesophilic anaerobic co-digestion of sewage sludge with municipal organic waste. Chemical and Process Engineering Research. Vol. 31 p. 43–53.
  • LISOWSKI A., BULIŃSKI J., GACH S., KLONOWSKI J., SYPUŁA M., CHLEBOWSKI J.,..., STASIAK P. 2017. Biomass harvested at two energy plant growth phases for biogas production. Industrial Crops and Products. Vol. 105 p. 10–23. DOI 10.1016/j.indcrop.2017.04.058.
  • LO H., KURNIAWAN T., SILLANPÄÄ M., PAI T., CHIANG C., CHAO K., ..., WU H. 2010. Modeling biogas production from organic fraction of MSW co-digested with MSWI ashes in anaerobic bioreactors. Bioresource Technology. Vol. 101 p. 6329–6335. DOI 10.1016/j.biortech.2010.03.048.
  • MUCK R., NADEAU E., MC ALLISTER T., CONTRERAS-GOVEA F., SANTOS M., KUNG L. 2018. Silage review: Recent advances and future uses of silage additives. Journal of Dairy Science. Vol. 101 p. 3980–4000. DOI 10.3168/jds.2017-13839.
  • NASCIMENTO AGARUSI M.C., GOMES PEREIRA O., DA SILVA L.D., DA SILVA V.P., DE PAULA R.A., ESILVA F.F., RIBEIRO K.G. 2022. Effect of various strains of Lactobacillus buchneri on the fermentation, quality and aerobic stability of corn silage. Agriculture. Vol. 12 (1), 95. DOI 10.3390/agriculture12010095.
  • OUDE ELFERINK S.J., KROONEMAN J., GOTTSCHAL J.C., SPOELSTRA S.F., FABER F., DRIEHUIS F. 2001. Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri. Applied and Environmental Microbiology. Vol. 67 p. 125–132. DOI 10.1128/AEM.67.1.125-132.2001.
  • PAKARINEN O., LEHTOMAKI A., RISSANEN S., RINTALA J. 2008. Storing energy crops for methane production: Effects of solids content and biological additive. Bioresource Technology. Vol. 99 p. 7074–7082. DOI 10.1016/j.biortech.2008.01.007.
  • PIĄTEK M., LISOWSKI A., KASPRZYCKA A., LISOWSKA B. 2016. The dynamics of an anaerobic digestion of crop substrates with an unfavourable carbon to nitrogen ratio. Bioresource Technology. Vol. 216 p. 607–612. DOI 10.1016/j.biortech.2016.05.122.
  • PN-EN 13342 – wersja polska. Charakterystyka osadów ściekowych – Oznaczanie azotu Kjeldahla [Polish version. Characteristics of sewage sludge – Determination of Kjeldahl nitrogen]. Warszawa. PKN.
  • PN-EN ISO 13906:2009P – wersja polska. Pasze – Oznaczanie zawartości włókna kwaśnodetergentowego (ADF) i ligniny kwaśnodetergentowej (ADL) [Animal feeding stuffs – Determination of acid detergent fibre (ADF) and acid detergent lignin (ADL) contents]. Warszawa. PKN.
  • PN-EN ISO 16472:2007P – wersja polska. Pasze – Oznaczanie zawartości włókna obojętnodetergentowego po traktowaniu amylazą (aNDF) [Animal feeding stuffs – Determination of amylase-treated neutral detergent fibre content (aNDF)]. Warszawa. PKN.
  • PN-R-64784:1994 – wersja polska. Pasze – oznaczanie zawartości cukrów [Polish version. Animal feeding stuffs – determination of sugar content]. Warszawa. PKN.
  • PROCHNOW A., HEIERMANN M., PLOCHL M. 2012. Permanent grassland for bioenergy: Factors management and conversion efficiency. In: Grassland Science in Europe Proceedings of the 17th Symphosium of the European Grassland Federation. Eds. Á. Helgadóttir, A. Hopkins p. 514–521.
  • PROCHNOW A., HEIERMANN M., PLOCHL M., LINKE B., IDLER C., AMON T., HOBBS P. 2009. Bioenergy from permanent grassland – A review: 1. Biogas. Bioresource Technology. Vol. 100 p. 4931–4944. DOI 10.1016/j.biortech.2009.05.070.
  • SUN H., CUI X., LI R., GUO J., DONG R. 2021. Ensiling process for efficient biogas production from lignocellulosic substrates: Methods, mechanisms, and measures. Bioresource Technology. Vol. 342. DOI 10.1016/j.biortech.2021.125928.
  • TEIXEIRA FRANCO R., BUFFIERE P., BAYARD R. 2016. Ensiling for biogas production: Critical parameters. A review. Biomass Bioenergy. Vol. 94 p. 94–104. DOI 10.1016/j.biombioe.2016.08.014.
  • VERVAEREN H., HOSTYN K., GHEKIERE K., WILLEMS G. 2010. Biological ensilage additives as pretreatment for maize to increase the biogas production. Renewable Energy. Vol. 35 p. 2089–2093. DOI 10.1016/j.renene.2010.02.010.
  • WHITTAKER C., HUNT J., MISSELBROOK T., SHIELD I. 2016. How well does Miscanthus ensile for use in an aerobic digestion. Biomass Bioenergy. Vol. 88 p. 24–34. DOI 10.1016/j.biombioe.2016.03.018.
  • YADVIKA , SANTOSH, SREEKRISHNAN T., KOHLI S., RANA V. 2004. Enhancement of biogas production from solid substrates using different techniques – A review. Bioresource Technology. Vol. 95 p. 1–10. DOI 10.1016/j.biortech.2004.02.010.
  • ZHAO X., LIU J., LIU J., YANG F., ZHU W., YUAN X., HU Y., CIU Z., WANG X. 2017. Effect of ensiling and silage additives on biogas production and microbial community dynamics during anaerobic digestion of switchgrass. Bioresource Technology. Vol. 241 p. 349–359. DOI 10.1016/j.biortech.2017.03.183.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79b2c990-ec53-44fd-ac11-e1c34c854f78
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.