PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure morphology and aging characteristics of 9% Cr martensitic heat-resistant steel after service

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Herein, based on the strengthening mechanism and aging mechanism of 9% Cr steel, changes in the microstructure and mechanical properties during long-term high-temperature service are analyzed. The limitations of current microstructure observation in the aging rating process and the defects of the aging evaluation system are expounded. It is proposed that the aging evaluation of 9% Cr martensitic heat-resistant steel can distinguish between the abnormal microstructure and the aging phenomenon occurring during long-term operation, and the combination of higher resolution microscopy observation such as laser confocal scanning microscopy with mechanical property tests could provide a comprehensive judgement.
Wydawca
Rocznik
Strony
50--65
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • China Nuclear Energy Technology Co., Ltd. Beijing, China
autor
  • North China Electric Power Test and Research Institute, China Datang Group General Institute of Science and Technology Co., Ltd. Beijing, China
autor
  • North China Electric Power Research Institute Co., Ltd. Beijing, China
autor
  • China Nuclear Energy Technology Co., Ltd. Beijing, China
autor
  • School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai, China
autor
  • Fire and Rescue Institute Beijing
autor
  • Fire and Rescue Institute Beijing
autor
  • North China Electric Power Test and Research Institute, China Datang Group General Institute of Science and Technology Co., Ltd.Beijing, China
autor
  • Science and Technology Research Institute, State Power Investment CorporationBeijing, China
Bibliografia
  • [1] Saini, N., Mulik, R.S., Mahapatra, M.M., Study on the effect of ageing on laves phase evolution and their effect on mechanical properties of P92 steel, Mater. Sci. Eng. A, 2018, 716: 179–188
  • [2] Khayatzadeh, S., Tanner, D.W.J., Truman, C.E., Flewitt, P.E.J., Smith, D.J., Influence of thermal ageing on the creep behaviour of a P92 martensitic steel, Mater. Sci. Eng. A, 2017, 708: 544–555
  • [3] Zhao, L., Jing, H., Xu, L., An, J., Xia, G., Numerical investigation of factors affecting creep damage accumulation in ASME P92 steel welded joint, Mater. Des., 2012, 34: 566–575
  • [4] Zhao, D., Li, S., Wang, X., Wang, Y., Liu, F., Cao, X., Proton irradiation induced defects in T92 steels: An investigation by TEM and positron annihilation spectroscopy, Nucl. Instrum. Methods Phys. Res. B, 2019, 442: 59–66
  • [5] Dak, G., Singh, V., Kumar, A., Sirohi, S., Bhattacharyya, A., Pandey, C., et al., Microstructure and mechanical behaviour study of the dissimilar weldment of ‘IN82 buttered’ P92 steel and AISI 304L steel for ultra super critical power plants, Mater. Today Commun., 2023, 37: 107552
  • [6] Hald, J., Microstructure and long-term creep properties of 9-12% Cr steels, Int. J. Press. Vessel. Pip., 2008, 85(1/2): 30–37
  • [7] Hald, J., Korcakova, L., Precipitate stability in creep resistant ferritic steels- experimental investigations and modeling, ISIJ Int., 2003, 43(3): 420–427
  • [8] Suzuki, K., Kumai, S., Toda, Y., Kushima, H., Kimura, K., Two-phase separation of primary MX carbonitride during tempering in creep resistant 9Cr1MoVNb steel, ISIJ Int., 2004, 43(7): 1089–1094
  • [9] Dvorak, J., Kral, P., Sklenicka, V., Kvapilova, M., Sifner, J., Koula, V., et al., Study of creep damage in P92 steel using acoustic emission, Procedia Struct. Integr., 2024, 52: 259–266
  • [10] Shang, C.G., Wang, M.L., Zhou, Z.C., Yagi, K., Lu, Y.H., The microstructure evolution and its effect on creep behaviors in P92 steel under different stresses, Mater. Charact., 2023, 198: 112744
  • [11] Lou, M., Niu, S., Ma, Y., Shan, H., Yang, B., Li, Y., The aging characteristics of resistance rivet welded aluminum/steel joints, J. Mater. Res. Technol., 2023, 26:3615–3628
  • [12] He, H., Shen, Y., Guo, Y., Precipitates change of P92 steel under 3.5 MeV Fe13+ ion irradiation at 400°C, Mater. Charact., 2023, 205: 113273
  • [13] Dudova, N., Mishnev, R., Kaibyshev, R., Effect of longterm aging on the low cycle fatigue behavior and microstructure of a 10% Cr martensitic steel with low nitrogen and high boron contents at 650°C, Mater. Today Commun., 2024, 38: 108323
  • [14] Sklenicka, V., Kucharova, K., Svobodova, M., Kral, P., Kvapilova, M., Dvorak, J., The effect of a prior shortterm ageing on mechanical and creep properties of P92 steel, Mater. Charact., 2018, 136: 388–397
  • [15] Maddi, L., Shivhare, R., Kumar, V., Goel, M., Ramesh, M., Ballal, A., Effect of tempering time on the microstructure and stress rupture properties of P92 steel, Mater. Today: Proc., 2021, 44(Part 1): 34–38
  • [16] Wen, J.-b., Zhou, C.-Y., Li, X., Pan, X.-M., Chang, L., Zhang, G.-D., et al., Effect of temperature range on thermal-mechanical fatigue properties of P92 steel and fatigue life prediction with a new cyclic softening model, Int. J. Fatigue, 2019, 129: 105226
  • [17] Gao, N., Zhang, W., Yin, P., Liang, F., Zhang, G., Xia, X., et al., Multiaxial fatigue behaviour and damage mechanisms of P92 steel under various strain amplitudes and strain ratios at high temperature, Int. J. Fatigue, 2022, 158: 106774
  • [18] Junek, M., Svobodová, M., Janovec, J., Horváth, J., Ducháček, P., Long-term thermal degradation of narrow gap orbital welded P91 and P92 steels, Int. J. Press. Vessel. Pip., 2020, 185: 104133
  • [19] Yang, X., Liao, B., Xiao, F.-r., Yan, W., Shan, Y.-y., Yang, K., Ripening behavior of M23C6 carbides in P92 steel during aging at 800°C, J. Iron Steel Res. Int., 2017, 24(8): 858–864
  • [20] Xia, X., Zhu, B., Jin, X., Tang, M., Yang, L., Xue, F., et al., Analysis on microstructure and properties evolution and life prediction of P92 steel in high temperature service, Int. J. Press. Vessel. Pip., 2021, 194(Part A):104482
  • [21] Zhang, W., Zhang, T., Wang, X., Chen, H., Gong, J., Remaining creep properties and fracture behaviour of P92 steel welded joint under prior low cycle fatigue loading, J. Mater. Res. Technol., 2020, 9(4): 7887–7899
  • [22] Dak, G., Sirohi, S., Pandey, C., Study on microstructure andmechanical behavior relationship for laser-welded dissimilar joint of P92 martensitic and 304L austenitic steel, Int. J. Press. Vessel. Pip., 2022, 196: 104629
  • [23] Xin, Z., Zhigang, Z., Xiaoru, W., Ran, W., Liwei, W., Research progress on reheat cracks in welded joints of power plant boiler pressure pipelines, Mech. Eng. Mater., 2017, 41(2): 8–14 + 111 (in Chinese)
  • [24] Vaillant, J.C., Vandenberghe, B., Hahn, B., Heuser, H., Jochum, C., T/P23, 24, 911an d 92: new grades for advanced coal fire power plants: properties and experience, Int. J. Press. Vessel. Pip., 2008, 85(1/2): 38–46
  • [25] Adhithan, B., Pandey, C., Study on effect of grain refinement of P92 steel base plate on mechanical and microstructural features of the welded joint, Int. J. Press. Vessel. Pip., 2021, 192: 104426
  • [26] Zhang, X., Yanchang, Q., Comparative study of different welding wires on T92 welded joints, Philos. Mag. Lett., 2018, 9(4): 133–138
  • [27] Meng, L., Research on safety performance of abnormal hardness of P92 steel, Tianjin University, Tianjin, 2013
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79b09e29-84f7-4b0f-b4a4-be21a722655c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.