PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear control for a diesel engine: A CLF-based approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we propose a control Lyapunov function based on a nonlinear controller for a turbocharged diesel engine. A model-based approach is used which predicts the experimentally observed engine performance for a biodiesel. The basic idea is to develop an inverse optimal control and to employ a Lyapunov function in order to achieve good performances. The obtained controller gain guarantees the global convergence of the system and regulates the flows for the variable geometry turbocharger as well as exhaust gas recirculation systems in order to minimize the NOx emission and the smoke of a biodiesel engine. Simulation of the control performances based on professional software and experimental results show the effectiveness of this approach.
Rocznik
Strony
821--835
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
  • MIS Laboratory, University of Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex 1, France
autor
  • LAGIS CNRS 8219, Graduate School of Engineering, 13 rue de Toul, 59000 Lille, France
  • MIS Laboratory, University of Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex 1, France
autor
  • MIS Laboratory, University of Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex 1, France
Bibliografia
  • [1] Abidi, I., Bosche, J., Hajjaji, A.E. and Aguilera-Gonzales, A. (2013). Fuzzy robust tracking control with pole placement for a turbocharged diesel engine, Proceedings of the 21st Mediterranean Conference on Control and Automation (MED’13), Crete, Greece.
  • [2] Adi, G., Hall, C., Snyder, D., Bunce, M., Satkoski, C., Kumar, S., Garimella, P., Stanton, D. and Shaver, G. (2009). Soy-biodiesel impact on nox emissions and fuel economy for diffusion-dominated combustion in a turbo-diesel engine incorporating exhaust gas recirculation and common rail fuel injection, Energy & Fuels 23(12): 5821–5829.
  • [3] Boulkroune, B., Djemili, I., Aitouche, A. and Cocquempot, V. (2013). Robust nonlinear observer design for actuator fault detection in diesel engines, International Journal of Applied Mathematics and Computer Science 23(3): 557–569, DOI: 10.2478/amcs-2013-0042.
  • [4] Cook, J., Sun, J., Buckland, J., Kolmanovsky, I.V., Peng, H. and Grizzle,W. (2006). Automotive powertrain control—a survey, Asian Journal of Control 8(3): 237–260.
  • [5] Delaleau, E., Louis, J.-P. and Ortega, R. (2001). Modeling and control of induction motors, International Journal of Applied Mathematics and Computer Science 11(1): 105–129.
  • [6] Djemili, I., Aitouche, A. and Cocquempot, V. (2012). Fault tolerant control of internal combustion engine subject to intake manifold leakage, Preprints of the 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (SAFEPROCESS), Mexico City, Mexico.
  • [7] Isidori, A. (1989). Nonlinear Control Systems, 2nd Edn., Springer Verlag, Berlin.
  • [8] Jankovic, M., Jankovic, M. and Kolmanovsky, I. (1998). Robust nonlinear controller for turbocharged diesel engines, Proceedings of the American Control Conference, Philadelphia, PA, USA, pp. 1389–1395.
  • [9] Jankovic, M., Jankovic, M. and Kolmanovsky, I. (2000). Constructive Lyapunov control design for turbocharged diesel engines, IEEE Transactions on Control Systems Technology 8(2): 288–299.
  • [10] Kao, M. and Moskwa, J. (1995). Turbocharged diesel engine modeling for nonlinear engine control and state estimation, ASME Journal of Dynamic Systems, Measurement and Control 117(1): 20–30.
  • [11] Kuzmych, O., Aitouche, A., Bosche, J. and El-Hajjaji, A. (2012). Robust nonlinear observer with H∞ performance analysis of a turbocharged diesel engine, International Symposium on Security and Safety of Complex Systems, 2SCS12, Agadir, Morocco.
  • [12] Lansky, L. (2008). Diesel Engine Modelling and Control, Master’s thesis, Czech Technical University in Prague, Prague.
  • [13] Sepulchre, R., Jankovic, M. and Kokotovic, P. (1997). Constructive Nonlinear Control, Springer Verlag, Berlin.
  • [14] Simani, S. (2013). Residual generator fuzzy identification for automotive diesel engine fault diagnosis, International Journal of Applied Mathematics and Computer Science 23(2): 419–438, DOI: 10.2478/amcs-2013-0032.
  • [15] Stefanopoulou, A.G., Kolmonovsky, I. and Freudenberg, J.S. (2000). Control of variable geometry turbocharged diesel engines for reduced emissions, Transactions on Control System Technology 8(4): 733–745.
  • [16] Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on Systems, Man and Cybernetics 15(1): 116–132.
  • [17] Tanaka, K. and Wang, H.O. (2001). Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, Wiley, New York, NY.
  • [18] Tomera, M. (2010). Nonlinear controller design of a ship autopilot, International Journal of Applied Mathematics and Computer Science 20(2): 271–280, 10.2478/v10006-010-0020-8.
  • [19] Upadhyay, D., Utkin, V. and Rizzoni, G. (2002). Multivariable control design for intake flow regulation of a diesel engine using sliding mode, 15th Triennial World Congress, Barcelona, Spain, Vol. 15, Part 1.
  • [20] Utkin, V. (1992). Sliding Modes in Control Optimization, Springer Verlag, Berlin/New York, NY.
  • [21] Wahlstrom, J. and Eriksson, L. (2011a). Modeling diesel engines with a variable-geometry turbocharger and exhaust gas recirculation by optimization of model parameters for capturing non-linear system dynamics, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 225(7): 959–986.
  • [22] Wahlstrom, J. and Eriksson, L. (2011b). Nonlinear EGR and VGT control with integral action for diesel engines, Oil and Gas Science and Technology 66(4): 573–586.
  • [23] Wahlstrom, J., Eriksson, L., Nielsen, L. and Pettersson, M. (2005). PID controllers and their tuning for EGR and VGT control in diesel engines, 16th IFAC World Congress, Prague, Czech Republic.
  • [24] Witkowska, A. and Śmierzchalski, R. (2012). Designing a ship course controller by applying the adaptive backstepping method, International Journal of Applied Mathematics and Computer Science 22(4): 985–997, DOI: 10.2478/v10006-012-0073-y.
  • [25] Yarza, A., Santibanez, V. and Moreno-Valenzuela, J. (2013). An adaptive output feedback motion tracking controller for robot manipulators: Uniform global asymptotic stability and experimentation, International Journal of Applied Mathematics and Computer Science 23(3): 599–611, DOI: 10.2478/amcs-2013-0045.
  • [26] Zemouche, Z., Boutayeb, M. and Bara, G. (2004). Observer design for nonlinear systems: An approach based on the differential mean value theorem, Proceedings of the 44th IEEE Conference on Decision and Control/European Control Conference, Seville, Spain, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79adb76f-8193-450e-8311-3df697e97a4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.