PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Vibration optimization of a two-link flexible manipulator with optimal input torques

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is concerned with the optimal path planning for reduction in residual vibration of two-flexible manipulator. So after presenting the model of a two-link flexible manipulator, the dynamic equations of motion were derived using the assumed modes method. Assuming a desired path for the end effector, the robot was then optimized by considering multiple objective functions. The objective functions should be defined such that in addition to guaranteeing the end effector to travel on the desired path, they can prevent the undesirable extra vibrations of the flexible components. Moreover, in order to assure a complete stop of the robot at the end of the path, the velocity of the end effector at the final point in the path should also reach zero. Securing these two objectives, a time-optimal control may then be applied in order for the robot to travel the path in the minimum duration possible. In all the scenarios, the input motor torques applied to the Two-link are determined as the optimization variables in a given range. The optimization procedures were carried out based on the GA (Genetic Algorithm) and BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithms, and the results are then compared. It is observe that the BFGS algorithm was able to achieve better results compared to GA running a lower number of iterations. Then the final value of the objective function after optimization indicates the decrease in the vibrations of the end effector at the tip of the flexible link.
Rocznik
Strony
253--265
Opis fizyczny
Bibliogr. 11 poz., il, wykr.
Twórcy
autor
  • School of Mechanical Engineering, University of Guilan, Rasht, Iran
  • School of Mechanical Engineering, Islamic Azad University, Tehran, Iran
Bibliografia
  • [1] Kojima, H. and Kibe, T.: Residual Vibration Reduction Control of a Two-Link Flexible Robot Arm Using Optimal Trajectory Planning based on Genetic Algorithm, Journal of the Robotics Society of Japan, 19, 905-12, 2001.
  • [2] Kojima, H. and Kibe, T.: Optimal trajectory planning of a two-link flexible robot arm based on genetic algorithm for residual vibration reduction, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems Expanding the Societal Role of Robotics in the the Next Millennium, (Cat No01CH37180), 4, 2276-81,2001.
  • [3] Andersson, J.: Sensitivity analysis in Pareto optimal design, Space, 2, 2, 2002.
  • [4] Li, H., Yang, Z. and Huang, T.: Dynamics and elasto-dynamics optimization of a 2-DOF planar parallel pick-and-place robot with flexible links, Structural and Multidisciplinary Optimization, 38, 195-204, 2009.
  • [5] Caro, S., Chablat, D., Ur-Rehman, R. and Wenger, P.: Multiobjective Design Optimization of 3-PRR Planar Parallel Manipulators, In: Bernard, A. editor, Global Product Development: Proceedings of the 20th CIRP Design Conference, Ecole Centrale de Nantes, Nantes, France, 19th-21st April 2010, Springer, 373-83, 2011.
  • [6] Hegde, G. S., Vinod, M. S. and Shankar, A.: Optimum dynamic design of flexible robotic manipulator, International Journal of Mechanics and Materials in Design, 5, 315-25, 2009.
  • [7] Neto, M. A., Ambrosio, J. and Leal, R. P.: Sensitivity analysis of flexible multibody systems using composite materials components, International Journal for Numerical Methods in Engineering, 77, 386-413, 2009.
  • [8] Zhang, X., Xu, W. and Nair, S.S.: Comparison of some modeling and control issues for a exible two link manipulator, ISA Transactions, 43, 509-25, 2004.
  • [9] Dubay, R., Hassan, M., Li, C. and Charest, M.: Finite element based model predictive control for active vibration suppression of a one-link flexible manipulator, ISA Transactions, 53, 1609-19, 2014.
  • [10] Arora, J. S.: Introduction to Design Optimization, Introduction to Optimum Design, Academic Press, Boston, 1-15, 2012.
  • [11] Gennert, M. A. and Yuille, A. L.: Determining the optimal weights in multiple objective function optimization, ICCV, 87-9, 1988.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79ad55a7-e4e2-47c9-9f6d-f6979c84276f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.