PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural Investigations of Afghanistan Deduced from Remote Sensing and Potential Field Data

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study integrates potential gravity and magnetic field data with remotely sensed images and geological data in an effort to understand the subsurface major geological structures in Afghanistan. Integrated analysis of Landsat SRTM data was applied for extraction of geological lineaments. The potential field data were analyzed using gradient interpretation techniques, such as analytic signal (AS), tilt derivative (TDR), horizontal gradient of the tilt derivative (HG-TDR), Euler Deconvolution (ED) and power spectrum methods, and results were correlated with known geological structures. The analysis of remote sensing data and potential field data reveals the regional geological structural characteristics of Afghanistan. The power spectrum analysis of magnetic and gravity data suggests shallow basement rocks at around 1 to 1.5 km depth. The results of TDR of potential field data are in agreement with the location of the major regional fault structures and also the location of the basins and swells, except in the Helmand region (SW Afghanistan) where many high potential field anomalies are observed and attributed to batholiths and near-surface volcanic rocks intrusions. A high-resolution airborne geophysical survey in the data sparse region of eastern Afghanistan is recommended in order to have a complete image of the potential field anomalies.
Czasopismo
Rocznik
Strony
978--1003
Opis fizyczny
Bibliogr. 58 poz.
Twórcy
autor
  • Kyushu University, Faculty of Engineering, Department of Earth Resources Engineering, Fukuoka, Japan
  • Dept. of Geology, United Arab Emirates University, Al-Ain, United Arab Emirates
autor
  • Kyushu University, Faculty of Engineering, Department of Earth Resources Engineering, Fukuoka, Japan
autor
  • King Saud University, Department of Geology and Geophysics, Riyadh, Saudi Arabia
Bibliografia
  • AGS (2005), Geology of Afghanistan, Afghanistan Geological Survey, available from: http://www.bgs.ac.uk/afghanminerals/geology.htm (accessed: 2015).
  • Aitken, A.R.A., and P.G. Betts (2009), Multi-scale integrated structural and aeromagnetic analysis to guide tectonic models: An example from the eastern Musgrave Province, Central Australia, Tectonophysics 476, 3-4, 418-435, DOI: 10.1016/j.tecto.2009.07.007.
  • Arisoy, M.O., and U. Dikmen (2013), Edge detection of magnetic sources using enhanced total horizontal derivative of the tilt angle, Bull. Earth Sci. Appl. Res. Cent. Hacet. Univ. 34, 1, 73-82.
  • Azizi, M., and H. Saibi (2015), Integrating gravity data with remotely sensed data for structural investigation of the Aynak-Logar Valley, eastern Afghanistan, and the surrounding area, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 8, 2, 816-824, DOI: 10.1109/JSTARS.2014.2347375.
  • Azizi, M., H. Saibi, and G.R.J. Cooper (2015), Mineral and structural mapping of the Aynak-Logar Valley (eastern Afghanistan) from hyperspectral remote sensing data and aeromagnetic data, Arab. J. Geosci. 8, 12, 10911-10918, DOI: 10.1007/s12517-015-1993-2.
  • Betts, P.G., R.K. Valenta, and J. Finlay (2003), Evolution of the Mount Woods Inlier, northern Gawler Craton, Southern Australia: An integrated structural and aeromagnetic analysis, Tectonophysics 366, 1-2, 83-111, DOI: 10.1016/ S0040-1951(03)00062-3.
  • Betts, P., H. Williams, J. Stewart, and L. Ailleres (2007), Kinematic analysis of aeromagnetic data: Looking at geophysical data in a structural context, Gondwana Res. 11, 4, 582-583.
  • Blaikie, T.N., L. Ailleres, P.G. Betts, and R.A.F. Cas (2014), Interpreting subsurface volcanic structures using geologically constrained 3-D gravity inversions: Examples of maar-diatremes, Newer Volcanics Province, southeastern Australia, J. Geophys. Res. Solid Earth 119, 4, 3857-3878, DOI: 10.1002/ 2013JB010751.
  • Blakely, R.J. (1995), Potential Theory in Gravity and Magnetic Applications, Cambridge University Press, Cambridge, 441 pp.
  • Bosum, W., A. Hahn, E.G. Kind, and D. Weippert (1968), Airborne magnetometer survey in the Kingdom of Afghanistan, Geological Survey of the Federal Republic of Germany, 46 pp.
  • Chen, S., and Y. Zhou (2005), Classifying depth-layered geological structures on Landsat TM images by gravity data, a case study of the western slope of Songliao Basin, northeast China, Int. J. Remote Sens. 26, 13, 2741-2754, DOI: 10.1080/01431160500104210.
  • Debeglia, N., and J. Corpel (1997), Automatic 3-D interpretation of potential field data using analytic signal derivatives, Geophysics 62, 1, 87-96, DOI: 10.1190/1.1444149.
  • Durga Rao, K.H.V., V. Bhanumurthy, and P.S. Roy (2009), Application of satellitebased rainfall products and SRTM DEM in hydrological modelling of Brahmaputra basin, J. Indian Soc. Remote Sens. 37, 4, 587-600, DOI: 10.1007/s12524-009-0051-5.
  • Fairhead, J.D., A. Salem, S. Williams, and E. Samson (2008), Magnetic interpretation made easy: The tilt-depth-dip-Δk method. In: 2008 SEG Ann. Int. Meeting, Expanded abstracts, Society of Exploration Geophysicists, 779- 783.
  • Finn, C.A., and B. Drenth (2007), Regional gravity and magnetic data help map subsurface geology in Afghanistan. In: GSA Denver Ann. Meeeting, Abstract # 156-9.
  • FitzGerald, D., A. Reid, and P. McInerney (2004), New discrimination techniques for Euler deconvolution, Comput. Geosci. 30, 5, 461-469, DOI: 10.1016/ j.cageo.2004.03.006.
  • Gotze, H.J., and S. Krause (2002), The Central Andean gravity high, a relic of an old subduction complex? J. South Am. Earth Sci. 14, 8, 799-811, DOI: 10.1016/S0895-9811(01)00077-3.
  • Hinze, W.J. (1985), The Utility of Regional Gravity and Magnetic Anomaly Maps, Society of Exploration Geophysicists, 469 pp.
  • Hinze, W.J., R.R.B. von Frese, and A.H. Saad (2013), Gravity and Magnetic Exploration, Cambridge University Press, Cambridge, 525 p.
  • Hsu, S.-K., J.-C. Sibuet, and C.-T. Shyu (1996), High resolution detection of geologic boundaries from potential field anomalies: An enhanced analytic signal technique, Geophysics 61, 2, 373-386, DOI: 10.1190/1.1443966.
  • Hsu, S.-K., D. Coppens, and C.-T. Shyu (1998), Depth to magnetic source using the generalized analytic signal, Geophysics 63, 6, 1947-1957, DOI: 10.1190/ 1.1444488.
  • Jadoon, I.A.K., and A. Khurshid (1996), Gravity and tectonic model across the Sulaiman fold belt and the Chaman Fault zone in western Pakistan and eastern Afghanistan, Tectonophysics 254, 1-2, 89-109, DOI: 10.1016/0040- 1951(95)00078-X.
  • Jessell, M.W., P.O. Amponsah, L. Baratoux, D.K. Asiedu, G.K. Loh, and J. Ganne (2012), Crustal-scale transcurrent shearing in the Paleoproterozoic SefwiSunyani-Comoé region, West Africa, Precambrian Res. 212-213, 155-168, DOI: 10.1016/j.precamres.2012.04.015.
  • Jung, W., J. Brozena, and M. Peters (2013), Predicting gravity and sediment thickness in Afghanistan, Geophys. J. Int. 192, 2, 586-601, DOI: 10.1093/gji/ ggs038.
  • Kamel, A.F., and A.M. Elsirafe (1994), Delineation and analysis of the surface and subsurface structural lineament patterns in the North Lake Nasser area and its surroundings, Aswan, upper Egypt, Int. J. Remote Sens. 15, 7, 1471- 1493, DOI: 10.1080/01431169408954178.
  • Keating, P., and M. Pilkington (2004), Euler deconvolution of the analytic signal and its application to magnetic interpretation, Geophys. Prospect. 52, 3, 165-182, DOI: 10.1111/j.1365-2478.2004.00408.x.
  • Khamies, A.A., and M.M. El-Tarras (2010), Surface and subsurface structures of Kalabsha area, southern Egypt, from remote sensing, aeromagnetic and gravity data, Egypt. J. Remote Sens. Space Sci. 13, 1, 43-52, DOI: 10.1016/ j.ejrs.2010.07.006.
  • Klingele, E.E., I. Marson, and H.G. Kahle (1991), Automatic interpretation of gravity gradiometric data in two dimensions: vertical gradient, Geophys. Prospect. 39, 3, 407-434, DOI: 10.1111/j.1365-2478.1991.tb00319.x.
  • Lamontagne, M., P. Keating, and S. Perreault (2003), Seismotectonic characteristics of the lower St. Lawrence seismic zone, Quebec, insights from geology, magnetics, gravity, and seismic, Can. J. Earth Sci. 40, 2, 317-336, DOI: 10.1139/e02-104.
  • Lunden, B., G. Wang, and K. Wester (2001), A GIS based analysis of data from Landsat TM, airborne geophysical measurements, and digital maps for geological remote sensing in the Stockholm region, Sweden, Int. J. Remote Sens. 22, 4, 517-532, DOI: 10.1080/01431160050505838.
  • MacLeod, I.N., K. Jones, and T.F. Dai (1993), 3-D analytic signal in the interpretation of total magnetic field data at low magnetic latitudes, Explor. Geophys. 24, 3-4, 679-688, DOI: 10.1071/EG993679.
  • Mashayandebvu, M., P. van Driel, A.B. Reid, and J.D. Fairhead (2001), Magnetic source parameters of two-dimensional structures using extended Euler deconvolution, Geophysics 66, 3, 814-823, DOI: 10.1190/1.1444971.
  • Mather, P.M. (2004), Computer Processing of Remotely-sensed Images: An Introduction, 3rd ed., John Wiley & Sons, Chichester, 442 pp.
  • McGinnis, L.D. (1971), Gravity fields and tectonics in the Hindu Kush, J. Geophys. Res. 76, 8, 1894-1904, DOI: 10.1029/JB076i008p01894.
  • McLean, M.A., C.J.L. Wilson, S.D. Boger, P.G. Beas, T.J. Rawling, and D. Damaske (2009), Basement interpretations from airborne magnetic and gravity data over the Lambert Rift region of East Antarctica, J. Geophys. Res. 114, B6, B06101, DOI: 10.1029/2008JB005650.
  • Mihalasky, M.J., J.L. Doebrich, R.W. Wahl, S.D. Ludington, G.J. Orris, J.D. Bliss, D.M. Sutphin, P.G. Schruben, K.S. Bolm, B.E. Hubbard, J.C. Mars, S.G. Peters, C.J. Wandrey, and P. Chirico (2007), Geographic information system (GIS) to accompany the non-fuel mineral resource assessment of Afghanistan. Appendix 1. In: S.G. Peters, S.D. Ludington, G.J. Orris, D.M. Sutphin, J.D. Bliss, J.J. Rytuba (eds.), Preliminary Non-fuel Mineral Resource Assessment of Afghanistan, U.S. Geological Survey – Afghanistan Ministry of Mines Joint Mineral Resource Assessment Team U.S., Geological Survey Open-File Report, 2007-1214 (Version 1), 2 CD-roms.
  • Miller, H.G., and V. Singh (1994), Potential field tilt – a new concept for location potential field sources, Appl. Geophys. 32, 2-3, 213-217, DOI: 10.1016/ 0926-9851(94)90022-1.
  • Nabighian, M.N. (1972), The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation, Geophysics 37, 3, 507-517, DOI: 10.1190/1.1440276.
  • Nabighian, M.N. (1974), Additional comments on the analytic signal of two dimensional magnetic bodies with polygonal cross-section, Geophysics 39, 1, 85- 92, DOI: 10.1190/1.1440416.
  • Nabighian, M.N. (1984), Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms: Fundamental relations, Geophysics 49, 6, 780-786, DOI: 10.1190/1.1441706.
  • Rabie, S.I., and A.A. Ammar (1990), Pattern of the main tectonic trends from remote geophysics, geological structures and satellite imagery, Central Eastern Desert, Egypt, Int. J. Remote Sens. 11, 4, 669-683, DOI: 10.1080/ 01431169008955049.
  • Reid, A.B., J.M. Allsop, H. Granser, A.J. Millett, and I.W. Somerton (1990), Magnetic interpretation in three dimensions using Euler deconvolution, Geophysics 55, 1, 80-91, DOI: 10.1190/1.1442774.
  • Roest, W.R., J. Verhoef, and M. Pilkington (1992), Magnetic interpretation using 3- D analytic signal, Geophysics 57, 1, 116-125, DOI: 10.1190/1.1443174.
  • Saadi, N.M., E. Aboud, H. Saibi, and K. Watanabe (2008a), Integrating data from remote sensing, geology and gravity for geological investigation in the Tarhunah area, Northwest Libya, Int. J. Digital Earth 1, 4, 347-366, DOI: 10.1080/17538940802435844.
  • Saadi, N.M., K. Watanabe, A. Imai, and H. Saibi (2008b), Integrating potential fields with remote sensing data for geological investigations in the Eljufra area of Libya, Earth Planets Space 60, 6, 539-547, DOI: 10.1186/ BF03353116.
  • Saibi, H., E. Aboud, and S. Ehara (2012), Analysis and interpretation of gravity data from the Aluto-Langano geothermal field of Ethiopia, Acta Geophys. 60, 2, 318-336, DOI: 10.2478/s11600-011-0061-x.
  • Salem, A., S. Williams, J.D. Fairhead, D. Ravat, and R. Smith (2007), Tilt-depth method: A simple depth estimation method using first-order magnetic derivatives, The Leading Edge 26, 12, 1502-1505, DOI: 10.1190/1.2821934.
  • Salem, A., S. Williams, J.D. Faihead, R. Smith, and D. Ravat (2008), Interpretation of magnetic data using tilt-angle derivatives, Geophysics 73, 1, L1-L10, DOI: 10.1190/1.2799992.
  • Schindler, J.S. (2002), Afghanistan: Geology in a troubled land, Geotimes 47, 2, 14-15.
  • Silverman, B.W. (1986), Density Estimation for Statistics and Data Analysis, Monographs on Statistics and Applied Probability, Vol. 26, Chapman & Hall/CRC, New York, 176 pp.
  • Spampinato, G.P.T., L. Ailleres, P.G. Betts, R.J. Armit (2015), Imaging the basement architecture across the Cork Fault in Queensland using magnetic and gravity data, Precambrian Res. 264, 63-81, DOI: 10.1016/j.precamres. 2015.04.002.
  • Spector, A., and F.E. Grant (1970), Statistical models for interpreting aeromagnetic data, Geophysics 35, 2, 293-302, DOI: 10.1190/1.1440092.
  • Spector, A., and B.K. Bhattacharyya (1966), Energy density spectrum and autocorrelation function of anomalies due to simple magnetic models, Geophys. Prospect. 14, 3, 242-272, DOI: 10.1111/j.1365-2478.1966.tb01760.x.
  • Stewart, J.R., and P.G. Betts (2010), Implications for Proterozoic plate margin evolution from geophysical analysis and crustal-scale modeling within the western Gawler Craton, Australia, Tectonophysics 483, 1-2, 151-177, DOI: 10.1016/j.tecto.2009.11.016.
  • Thompson, D.T. (1982), EULDPH: A new technique for making computer assisted depth estimates from magnetic data, Geophysics 47, 1, 31-37, DOI: 10.1190/1.1441278.
  • USGS (2006), Aeromagnetic and gravity surveys in Afghanistan: A website for distribution of data, U.S. Geological Survey Open-File Report, 2006-1204.
  • USGS (2008), Airborne gravity survey and ground gravity in Afghanistan: A website for distribution of data, U.S. Geological Survey Open-File Report, 2008-1089.
  • USGS (2011), Aeromagnetic surveys in Afghanistan: An updated website for distribution of data, U.S. Geological Survey Open-File Report, 2011-1247.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79acde1c-ec59-4b42-85f2-b52e1b46479e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.