Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents experimental observation of nonlinear vibrations in the response of a flexible cantilever beam to transverse harmonic base excitations around its flexural mode frequencies. In the experimental setup, instead of manual control of the signal excitation frequency and amplitude, a closed-loop vibration system is used to keep the excitation amplitude constant during the frequency sweep and to increase confidence in the experimental results. The experimental results show the presence of the third mode in the response when varying the excitation frequency around the fourth mode. The frequency-response curves, response spectrum and Poincaré plots were used for characterization of nonlinear dynamic behaviour of the beam.
Czasopismo
Rocznik
Tom
Strony
559--564
Opis fizyczny
Bibliogr. 24 poz., fot., rys., tab., wykr., wzory
Twórcy
autor
- Institute of Aeronautics and Space, Praça Eduardo Gomes, 50, 12228-904, São José dos Campos, SP, Brazil
autor
- Institute of Aeronautics and Space, Praça Eduardo Gomes, 50, 12228-904, São José dos Campos, SP, Brazil
autor
- Universidade Estadual Paulista Júlio de Mesquita Filho, Campus de Guaratinguetá, Av. Dr. Ariberto Pereira da Cunha, 333, 12516-410, Guaratinguetá, SP, Brazil
Bibliografia
- [1] Nayfeh, A.H., Mook, D.T. (1979). Nonlinear Oscillations. New York: Wiley.
- [2] Moon, F.C. (1987). Chaotic Vibrations. New York: Wiley.
- [3] Nayfeh, A.H. (2000). Nonlinear Interactions: Analytical, Computational, and Experimental Methods.New York: Wiley.
- [4] Rand, R.H. (2003). Lectures Notes on Nonlinear Vibrations. Dept. Theoretical & Applied Mechanics, Cornell University, Ithaca, New York.
- [5] Nayfeh, A.H., Pai, A.F. (2004). Linear and Nonlinear Structural Mechanics. New York: Wiley.
- [6] Lacarbonara, W. (2013). Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling.Springer Science & Business Media.
- [7] Oueini, S.S. (1999). Techniques for Controlling Structural Vibrations. Ph.D. Thesis. Virginia Polytechnic Institute and State University, Virginia.
- [8] Arafat, H.N. (1999). Nonlinear Response of Cantilever Beams. Ph.D. Thesis. Virginia Polytechnic Institute and State University, Virginia.
- [9] Malatkar, P. (2003). Nonlinear Vibrations of Cantilever Beams and Plates. Ph.D. Thesis. Virginia Polytechnic Institute and State University, Virginia.
- [10] Moon, F.C., Shaw, S.W. (1983). Vibrations of a beam with non-linear boundary conditions. International Journal of Nonlinear Mechanics, 18(6), 465–477.
- [11] Shaw, S.W. (1985). Forced vibrations of a beam with one-sided amplitude constraint: theory and experiment. Journal of Sound and Vibration, 99(2), 199−212.
- [12] Balachandran, B., Nayfeh, A.H., Smith, S.W., Pappa, R.S. (1994). Identification of nonlinear interactions in structures. Journal of Guidance, Control, and Dynamics, 17(2), 257−262.
- [13] Anderson, T.J., Balachandran, B., Nayfeh A.H. (1992). Observations of nonlinear interactions in a flexible cantilever beam. American Institute of Aeronautics and Astronautics, Inc., AIAA.
- [14] Anderson, T.J., Balachandran, B., Nayfeh, A.H. (1994). Nonlinear resonances in a flexible cantilever beam. Journal of Vibration and Acoustics, 116(4), 480–484.
- [15] Nayfeh, S.A., Nayfeh, A.H. (1994). Energy transfer from high-to-low-frequency modes in a flexible structure via modulation. Journal of Vibration and Acoustics, 116(2), 203−207.
- [16] Cusumano, J.P., Moon, F.C. (1995). Chaotic non-planar vibrations of the thin elastica, part I: experimental observation of planar instability. Journal of Sound and Vibration, 179(2), 185−208.
- [17] Anderson, T.J., Nayfeh, A.H., Balachandran, B. (1996). Experimental verification of the importance of the nonlinear curvature in the response of a cantilever beam. Journal of Vibration and Acoustics, 118(1), 21−27.
- [18] Tabaddor, M., Nayfeh, A.H. (1997). An experimental investigation of multimode responses in a cantilever beam. Journal of Vibration and Acoustics, 119(1), 532–538.
- [19] Anderson, T.J., Nayfeh, A.H., Balachandran, B. (1996). Coupling between high-frequency modes and a low-frequency mode: theory and experiment. Nonlinear Dynamics, 11, 17−36.
- [20] Oh, K., Nayfeh, A.H. (1998). High-to-low-frequency modal interactions in a cantilever composite plate. Journal of Vibration and Acoustics, 120(2), 579–587.
- [21] Cook, R.D., Malkus, D.S., Plesha, M.E. (1989). Concepts and Applications of Finite Element Analysis.New York: Wiley.
- [22] Yokoyama, T. (1990). Vibrations of a hanging Timoshenko beam under gravity. Journal of Sound and Vibration, 141(2), 245−258.
- [23] Schäfer, B.; Holzach, H. (1985). Experimental research on flexible beam modal control. Journal of Guidance, Control and Dynamics, 8, 597–604.[24] ANSYS Release 11.0 (2007). Documentation for ANSYS.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79ac7f86-2fe0-459d-8e65-7ade139057fe