PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modal Analysis of Laminated “CAS” and “CUS” Box-Beams

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, the authors discuss the numerical and experimental modal analysis of the cantilever thin-walled beams made of a carbon-epoxy laminate. Two types of beams were considered: circumferentially asymmetric stiffness (i.e., CAS) and circumferentially uniform stiffness (i.e., CUS) beams. The layer-up configurations of the laminate were chosen to get a vibration mode coupling effect in both analysed cases. The aim of the paper was to perform the numerical and experimental modal analysis of the composite structures, when a flapwise bending with torsion coupling effect or flapwise-chordwise bending coupling effect took place. Firstly, numerical studies by the finite element method was performed. The numerical simulations were carried out by the Lanczos method in the Abaqus software package. The natural frequencies and the corresponding free vibration modes were determined. Next, the experimental modal analyses of the CAS and CUS beams were performed. The test stand was consisted of a special grip, two beams with an adhered holder, the LMS Scadas III system with a modal hammer and an acceleration sensor. Finally, the results of both methods were compared.
Rocznik
Strony
441--454
Opis fizyczny
Bibliogr. 21 poz., fot., rys., tab.
Twórcy
autor
  • Department of Applied Mechanics, Mechanical Engineering Faculty, Lublin University of Technology, Nadbystrzycka 36,20-618 Lublin, Poland
  • Department of Applied Mechanics, Mechanical Engineering Faculty, Lublin University of Technology, Nadbystrzycka 36,20-618 Lublin, Poland
autor
  • Department of Applied Mechanics, Mechanical Engineering Faculty, Lublin University of Technology, Nadbystrzycka 36,20-618 Lublin, Poland
Bibliografia
  • [1] O. Song and L. Librescu. Structural modeling and free vibration analysis of rotating composite thin-walled beams. Journal of the American Helicopter Society, 42(4):358–369, 1997. doi: 10.4050/JAHS.42.358.
  • [2] O. Song and L. Librescu. Free vibration of anisotropic composite thin-walled beams of closed cross-section contour. Journal of Sound and Vibration, 167(1):129–147, 1993. doi: 10.1006/jsvi.1993.1325.
  • [3] S.-Y. Oh, O. Song, and L. Librescu. Effects of pretwist and presetting on coupled bending vibrations of rotating thin-walled composite beams. International Journal of Solids and Structures, 40(5):1203–1224, 2003. doi: 10.1016/S0020-7683(02)00605-4.
  • [4] O. Song and L. Librescu. Bending vibration of cantilevered thin-walled beams subjected to time-dependent external excitations. The Journal of the Acoustical Society of America, 98(1):313–319, 1995. doi: 10.1121/1.414358.
  • [5] L. Jun and J. Xianding. Response of flexure–torsion coupled composite thin-walled beams with closed cross-sections to random loads. Mechanics Research Communications, 32(1):25–41, 2005. doi: 10.1016/j.mechrescom.2004.03.012.
  • [6] M.O. Kaya. Free vibration analysis of a rotating Timoshenko beam by differential transform method. Aircraft Engineering and Aerospace Technology, 78(3):194–203, 2006. doi: 10.1108/17488840610663657.
  • [7] M.O. Kaya and O.O. Ozgumus. Flexural–torsional-coupled vibration analysis of axially loaded closed-section composite Timoshenko beam by using DTM. Journal of Sound and Vibration, 306(3):495–506, 2007. doi: 10.1016/j.jsv.2007.05.049.
  • [8] L. Librescu and O. Song. Thin-Walled Composite Beams: Theory and Application. Solid Mechanics and Its Applications. Springer Science & Business Media, 2005.
  • [9] Y. Ren, S. Yang, and X. Du. Modeling and free vibration behavior of rotating composite thin-walled closed-section beams with SMA fibers. Chinese Journal of Mechanical Engineering, 25(5):1029–1043, 2012. doi: 10.3901/CJME.2012.05.1029.
  • [10] K.V. Avramov, C. Pierre, and N. Shyriaieva. Flexural-flexural-torsional nonlinear vibrations of pre-twisted rotating beams with asymmetric cross-sections. Journal of vibration and Control, 13(4):329–364, 2007. doi: 10.1177/1077546307073675.
  • [11] S.-C. Choi, J.S-. Park, and J.-H. Kim. Active damping of rotating composite thin-walled beams using MFC actuators and PVDF sensors. Composite Structures, 76(4):362–374, 2006. doi: 10.1016/j.compstruct.2005.05.010.
  • [12] J. Latalski, M. Bocheński, and J. Warmiński. Control of bending-bending coupled vibrations of a rotating thin-walled composite beam. Archives of Acoustics, 39(4):605–613, 2014. doi: 10.2478/aoa-2014-0065.
  • [13] J. Latalski, J. Warminski, and G. Rega. Bending–twisting vibrations of a rotating hub–thin-walled composite beam system. Mathematics and Mechanics of Solids, 22(6):1303–1325, 2017. doi: 10.1177/1081286516629768.
  • [14] F. Georgiades, J. Latalski, and J. Warminski. Equations of motion of rotating composite beam with a nonconstant rotation speed and an arbitrary preset angle. Meccanica, 49(8):1833–1858, 2014. doi: 10.1007/s11012-014-9926-9.
  • [15] J. Latalski. Modeling of a rotating active thin-walled composite beam system subjected to high electric fields. In Konstantin Naumenko and Marcus Aßmus, editors, Advanced Methods of Continuum Mechanics for Materials and Structures, chapter 24, pages 435–455. Springer, 2016.
  • [16] L.T. Tenek and J. Argyris. Finite Element Analysis for Composite Structures, volume 59 of Solid Mechanics and Its Applications. Springer Science & Business Media, 2013.
  • [17] F.L. Matthews, G.A.O. Davies, D. Hitchings, and C. Soutis. Finite Element Modelling of Composite Materials and Structures. Elsevier Science, 2000.
  • [18] S. Stoykov and P. Ribeiro. Nonlinear forced vibrations and static deformations of 3D beams with rectangular cross section: the influence of warping, shear deformation and longitudinal displacements. International Journal of Mechanical Sciences, 52(11):1505–1521, 2010. doi: 10.1016/j.ijmecsci.2010.06.011.
  • [19] A. Teter and J. Gawryluk. Experimental modal analysis of a rotor with active composite blades. Composite Structures, 153:451–467, 2016. doi: 10.1016/j.compstruct.2016.06.013.
  • [20] A. Mitura, J. Gawryluk, and A. Teter. Numerical and experimental studies on the rotating rotor with three active composite blades. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 19(4):571–579, 2017. doi: 10.17531/ein.2017.4.11.
  • [21] Abacus: documentation 6.14.
Uwagi
EN
1. This research was financially supported by the Polish National Science Centre under Research Grant No. DEC-2012/07/B/ST8/03931.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79ac7836-62bd-4227-9a86-89df64986a62
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.