PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Marginal Discriminant Projection for Coal Mine Safety Data Dimensionality Reduction

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Metoda Marginal Discriminant Projection w zastosowaniu do redukcji wymiaru danych w systemach bezpieczeństwa kopalni węglowych
Języki publikacji
EN
Abstrakty
EN
Marginal Fisher Analysis (MFA) is a novel dimensionality reduction algorithm. However, the two nearest neighborhood parameters are difficult to select when constructing graphs. In this paper, we propose a nonparametric method called Marginal Discriminant Projection (MDP) which can solves the problem of parameters selection in MFA. Experiment on several benchmark datasets demonstrated the effectiveness of our proposed method, and appreciate performance was achieved when applying on coal mine safety data dimensionality reduction.
PL
W artykule zaproponowano nieparametryczna metodę nazwaną MDOP (marginal discriminant projection) która pomaga rozwiązać problem selekcji danych w algorytmie MFA (marginal Fisher analysis). Metodę zastosowano do redukcji danych w systemach bezpieczeństwa klopalni węglowych.
Rocznik
Strony
79--83
Opis fizyczny
Bibliogr. 14 poz., rys., wykr.
Twórcy
autor
  • China University of Mining and Technology
autor
  • China University of Mining and Technology
autor
  • China University of Mining and Technology
Bibliografia
  • [1] Y. Zeng, C. Wu. Research on fuzzy fractal neural network for prediction of mine gas emission. Coal Science and Technology. vol.32, no.2. pp.62-65,2004.
  • [2] C. Cai, G. Jing. Fuzzy Synthetic Evaluation of Prediction of Coal and Gas Outburst Scale. Journal of Safety and Environment. Vol.4, no.2, pp.54-56,2004.
  • [3] N. Li, D. Guo, M. Fan. Ash related analysis method applied to analysis of coal and gas outburst controlled factors. Coal Science and Technology. vol.32, no.2. pp.67-69,2004.
  • [4] J. Cheng, J. Bai, J. Qian and S. Li. Short- Term Forecasting Method of Coalmine Gas Concertration Based on Chaotic Time Series. Journal of China University of Mining & Technology. vol.37, no.2. pp.231-235, 2008.
  • [5] J. Zhang, J. Cheng, J. Qian, Forecasting Coalmine Gas Concentration Based on Adaptive Neuro-Fuzzy Inference System. Journal of China University of Mining & Technology. vol.36, no.4. pp.494-498, 2007.
  • [6] Y. Hou, J. Cheng, S. Li. Forecasting coalmine gas concentration based on RBF neural network. Proceedings of the International Conference on Information Acquisition. pp.192-194, 2007.
  • [7] A. M. Artinez and A. C. Kak, “PCA Versus LDA”. IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 23, no. 2, pp.228-233, 2001.
  • [8] X. He and P. Niyogi. “Locality preserving projection”. In Advances in Neural Information Processing System 16. MIT Press, Massachusetts, 2003.
  • [9] S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang and S. Lin. “Graph Embedding and Extensions: A General Framework for Dimensionality Reduction. Pattern Analysis and Machine Intelligence, IEEE Transactions on”, vol. 29, no. 1, pp. 40-51, 2007.
  • [10] J. Xu, J. Yang. “Nonparametric Marginal Fisher Analysis for Feature Extraction“. Lecture Notes in Computer Science, Vol. 6216, pp. 221-228, 2010.
  • [11] D. Xu , S. Yan , D. Tao, S. Lin and H. Zhang. “Marginal Fisher Analysis and Its Variants for Human Gait Recognition and Content- Based Image Retrieval“. IEEE transactions on image processing, vol. 16, no. 11, pp.2811-2821, 2007.
  • [12] J. Hu, W. Deng, J. Guo and W. Xu. “Learning a locality discriminating projection for classification. Knowledge-Based System, vol.22, no.8, pp.562-568, 2009.
  • [13] Z. Zeng, C.Liu, L. Huang. “Analysis on two Fisher Methods and a Synthesized Discriminant Projection”. Pattern Recognition, 2008. ICPR 2008. 19th International Conference on. No. (8-11), pp.1-4, 2008.
  • [14] E. Kokiopoulou, Y. Saad. “Enhanced graph-based dimensionality reduction with repulsion Laplaceans”. Pattern Recognition. vol. 42, no. 11, pp. 2392-2402, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79abdd35-8977-45e3-9686-b656f0d9ab27
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.