Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, nonlinear fundamental natural frequencies of Functionally Graded (FG) multilayer Graphene Platelet-reinforced Polymer Composite (GPL-RPC) curved cylindrical panels are studied. It is considered that the Graphene Platelet (GPL) nanofillers are distributed in the matrix either uniformly or nonuniformly along the thickness direction. Four GPL distribution patterns namely, UD, FG-O, FG-X, and FG-A are considered. The effective material properties of GPL-RPC layers are obtained via the modified Halpin–Tsai micromechanics model and the rule of the mixture. A nonlinear structural model is utilized based on the virtual work principle. Green’s nonlinear kinematic strain relations are used to account for the geometric nonlinearities and the First-order Shear Deformation Theory (FSDT) is adopted to generalize the formulation for the case of moderately thick cylindrical panels including transverse shear deformations. The Generalized Differential Quadrature (GDQ) method of solution is employed to solve the nonlinear governing equations of motion. The present study aims to study the effect of GPL weight fraction for the proposed distribution patterns on the nonlinear fundamental frequency of functionally graded GPL-RPC cylindrical panels with different boundary conditions.
Czasopismo
Rocznik
Tom
Strony
471--498
Opis fizyczny
Bibliogr. 49 poz., rys. kolor., wykr.
Twórcy
autor
- Adana AlparslanTürkeş Science and Technology University, Adana, Turkey
autor
- Adana AlparslanTürkeş Science and Technology University, Adana, Turkey
autor
- Adana AlparslanTürkeş Science and Technology University, Adana, Turkey
Bibliografia
- 1. G.N. Praveen, J.N. Reddy, Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates, International Journal of Solids and Structures, 35, 33, 4457–4476, 1998.
- 2. Y.Q. Wang, J.W. Zu, Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment, Aerospace Science and Technology, 69,550–562, 2017.
- 3. H. Kim, A.A. Abdala, C.W. Macosko, Graphene/polymer nanocomposites, Macromolecules, 43, 16, 6515–6530, 2010.
- 4. A.M. Esawi, M.M. Farag, Carbon nanotube reinforced composites: potential and current challenges, Materials & Design, 28, 9, 2394–2401, 2007.
- 5. K.M. Liew, Z.X. Lei, L.W. Zhang, Mechanical analysis of functionally graded carbonnanotube reinforced composites: a review, Composite Structures, 120, 90–97, 2015.
- 6. R. Gholami, R. Ansari, Large deflection geometrically nonlinear analysis of functionally graded multilayer graphene platelet-reinforced polymer composite rectangular plates,Composite Structures, 180, 760–771, 2017.
- 7. M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.Z. Yu, N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano, 3, 12, 3884–3890, 2009.
- 8. C.H. Thai, A.J.M. Ferreira, T.D.Tran, P. Phung-Van, Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the NURBS formulation, Composite Structures, 220, 749–759,2019.
- 9. J. Liu, U. Khan, J. Coleman, B. Fernandez, P. Rodriguez, S. Naher, D. Brabazon, Graphene oxide and graphene nanosheet reinforced aluminium matrix composites:powder synthesis and prepared composite characteristics, Materials & Design, 94, 87–94,2016.
- 10. F. Lin, Y. Xiang, H.S. Shen, Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites–a molecular dynamics simulation, Composites Part B:Engineering, 111, 261–269, 2017.
- 11. M. Heidarhaei, M. Shariati, H. Eipakchi, Experimental and analytical investigationsof the tensile behavior of graphene-reinforced polymer nanocomposites, Mechanics of Advanced Materials and Structures, 1–10, 2018.
- 12. H.S. Shen, Y. Xiang, F. Lin, D. Hui, Buckling and postbuckling of functionally gradedgraphene-reinforced composite laminated plates in thermal environments, Composites PartB: Engineering, 119, 67–78, 2017.
- 13. H. Wu, S. Kitipornchai, J. Yang, Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates, Materials & Design, 132, 430–441, 2017.
- 14. R.M.R. Reddy, W. Karunasena, W. Lokuge, Free vibration of functionally gradedGPL reinforced composite plates with different boundary conditions, Aerospace Scienceand Technology, 78, 147–156, 2018.
- 15. H. Guo, S. Cao, T. Yang, Y. Chen, Vibration of laminated composite quadrilateralplates reinforced with graphene nanoplatelets using the element-free IMLS-Ritz method,International Journal of Mechanical Sciences, 142, 610–621, 2018.
- 16. H. Wu, J. Yang, S. Kitipornchai, Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment, Composite Structures, 162,244–254, 2017.
- 17. C. Feng, S. Kitipornchai, J. Yang, Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs), CompositesPart B: Engineering, 110, 132–140, 2017.
- 18. M. Song, S. Kitipornchai, J. Yang, Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets, Composite Structures,159, 579–588, 2017.
- 19. J. Yang, H. Wu, S. Kitipornchai, Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams, Composite Structures, 161,111–118, 2017.
- 20. S. Sahmani, M.M. Aghdam, Nonlinear instability of axially loaded functionally graded multilayer graphene platelet-reinforced nanoshells based on nonlocal strain gradient elasticity theory, International Journal of Mechanical Sciences, 131, 95–106, 2017.
- 21. M. Song, J. Yang, S. Kitipornchai, W. Zhu, Buckling and postbuckling of biaxially compressed functionally graded multilayer graphene nanoplatelet-reinforced polymercomposite plates, International Journal of Mechanical Sciences, 131, 345–355, 2017.
- 22. R. Gholami, R. Ansari, Nonlinear harmonically excited vibration of third-order sheardeformable functionally graded graphene platelet-reinforced composite rectangular plates,Engineering Structures, 156, 197–209, 2018.
- 23. Z. Zhou, Y. Ni, Z. Tong, S. Zhu, J. Sun, X. Xu, Accurate nonlinear buckling analysis of functionally graded porous graphene platelet reinforced composite cylindrical shells,International Journal of Mechanical Sciences, 151, 537–550, 2019.
- 24. M. Arefi, E.M.R. Bidgoli, R. Dimitri, F. Tornabene, Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets, AerospaceScience and Technology, 81, 108–117, 2018.
- 25. C.H. Thai, A.J.M. Ferreira, P. Phung-Van, Size dependent free vibration analysisof multilayer functionally graded GPLRC microplates based on modified strain gradient theory, Composites Part B: Engineering, 169, 174–188, 2019.
- 26. P.H. Cong, N.D. Duc, New approach to investigate the nonlinear dynamic response and vibration of a functionally graded multilayer graphene nanocomposite plate on a viscoelasticPasternak medium in a thermal environment, Acta Mechanica, 229, 9, 3651–3670, 2018.
- 27. F. Bahranifard, M.R. GolbaharHaghighi, P. Malekzadeh, In-plane responses of multilayer FG-GPLRC curved beams in thermal environment under moving load, ActaMechanica, 231, 2679–2696, 2020.
- 28. A.W. Leissa, A.S. Kadi, Curvature effects on shallow shell vibrations, Journal of Soundand Vibration, 16, 2, 173–187, 1971.
- 29. S.L. Lau, Y.K. Cheung, Amplitude incremental variational principle for nonlinear vibration of elastic systems, ASME Journal of Applied Mechanics, 48, 959–964, 1981.
- 30. Y. Kobayashi, A. Leissa, Large amplitude free vibration of thick shallow shells supported by shear diaphragms, International Journal of Non-Linear Mechanics, 30, 1, 57–66, 1995.
- 31. K.M. Liew, C.W. Lim, S. Kitipornchai, Vibration of shallow shells: a review with bibliography, Applied Mechanics Reviews, 50, 431–444, 1997.
- 32. M. Amabili, M.P. Païdoussis, Review of studies on geometrically nonlinear vibrationsand dynamics of circular cylindrical shells and panels, with and without fluid-structure interaction, Applied Mechanics Reviews, 56, 4, 349–381, 2003.
- 33. T. Farsadi, M. Rahmanian, H. Kurtaran, Nonlinear lay-up optimization of variable stiffness composite skew and taper cylindrical panels in free vibration, Composite Structures, 262, 113629, 2021.
- 34. H. Kurtaran, Geometrically nonlinear transient analysis of thick deep composite curvedbeams with generalized differential quadrature method, Composite Structures, 128, 241–250, 2015.
- 35. T. Farsadi D. Asadi, H. Kurtaran, Nonlinear flutter response of a composite plate applying curvilinear fiber paths, Acta Mechanica, 231, 2, 715–731, 2020.
- 36. T. Farsadi D. Asadi, H. Kurtaran, Fundamental frequency optimization of variable stiffness composite skew plates, Acta Mechanica, 232, 2, 555–573, 2021.
- 37. T. Farsadi D. Asadi, H. Kurtaran, Flutter improvement of a thin walled wing-enginesystem by applying curvilinear fiber path, Aerospace Science and Technology, 93, 2, 105353,2019.
- 38. S. Abrate, M. Di Sciuva, 1.16 multilayer models for composite and sandwich structures,Comprehensive Composite Materials II, 1, 399–425, 2018.
- 39. M. Di Sciuva, Bending, vibration and buckling of simply supported thick multilayered orthotropic plates: an evaluation of a new displacement model, Journal of Sound andVibration, 105, 3, 425–442, 1986.
- 40. M. Di Sciuva, An improved shear-deformation theory for moderately thick multilayered anisotropic shells and plates, Journal of Applied Mechanics, 54, 3, 589–596, 1987.
- 41. H. Darban, R. Massabò, A homogenized structural model for shear deformable composites with compliant interlayers, Multiscale and Multidisciplinary Modeling, Experimentsand Design, 1, 4, 269–290, 2018.
- 42. W. Han, M. Petyt, Geometrically nonlinear vibration analysis of thin, rectangular platesusing the hierarchical finite element method—I: the fundamental mode of isotropic plates,Computers & Structures, 63, 2, 295–308, 1997.
- 43. M. Song, S. Kitipornchai, J. Yang, Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets, Composite Structures,159, 579–588, 2017.
- 44. R. Benamar, Nonlinear Dynamic Behaviour of Fully Clamped Beams and Rectangular Isotropic and Laminated Plates, Doctoral Dissertation, University of Southampton,Southampton, 1990.
- 45. P. Ribeiro, Non-linear free periodic vibrations of open cylindrical shallow shells, Journalof Sound and Vibration, 313, 1-2, 224–245, 2008.
- 46. V.N. Van Do, C.H. Lee, Bézier extraction based isogeometric analysis for bending andfree vibration behavior of multilayered functionally graded composite cylindrical panels reinforced with graphene platelets, International Journal of Mechanical Sciences, 183,105744, 2020.
- 47. S.W. Tsai, J.C. Halpin, N.J. Pagano, Invariant Properties of Composite Materials,Composite Materials Workshop, Technomic Publication Corporation, Stamford, 1968.
- 48. J.C. Halpin, N.J. Pagano, The laminate approximation for randomly oriented fibrous composites, Journal of Composite Materials, 3, 4, 720–724, 1969.
- 49. B.H. Lee, H.J. Kim, W.R. Yu, Fabrication of long and discontinuous natural fiber reinforced polypropylene biocomposites and their mechanical properties, Fibers and Polymers,10, 1, 83–90, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79aa8c84-60fc-4f6a-aa8e-a233e2e19c4c