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In this study, nonlinear fundamental natural frequencies of Func-
tionally Graded (FG) multilayer Graphene Platelet-reinforced Polymer Composite
(GPL-RPC) curved cylindrical panels are studied. It is considered that the Graphene
Platelet (GPL) nanofillers are distributed in the matrix either uniformly or non-
uniformly along the thickness direction. Four GPL distribution patterns namely,
UD, FG-O, FG-X, and FG-A are considered. The effective material properties of
GPL-RPC layers are obtained via the modified Halpin–Tsai micromechanics model
and the rule of the mixture. A nonlinear structural model is utilized based on the
virtual work principle. Green’s nonlinear kinematic strain relations are used to ac-
count for the geometric nonlinearities and the First-order Shear Deformation Theory
(FSDT) is adopted to generalize the formulation for the case of moderately thick cylin-
drical panels including transverse shear deformations. The Generalized Differential
Quadrature (GDQ) method of solution is employed to solve the nonlinear governing
equations of motion. The present study aims to study the effect of GPL weight frac-
tion for the proposed distribution patterns on the nonlinear fundamental frequency of
functionally graded GPL-RPC cylindrical panels with different boundary conditions.
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1. Introduction

Cylindrical and curved panels are used in many applications. Examples
include missile and aircraft fuselage, aerospace structures, pipes and engine ro-
tating components. Free and forced vibrations of cylindrical and curved panels
can be investigated in terms of different material properties. In particular, the
nanomaterials are valuable in industries, in which the weight to stiffness ratio of
the structure plays and important role. The modern appearance of Functionally
Graded Materials (FGMs) is believed to be an alternative solution for a certain
class of aerospace structures [1]. Due to smoothly and continuously varying ma-
terial properties from one surface to the other, FGMs are usually superior to the
conventional composite materials in terms of mechanical behavior [2]. Nano-fiber
reinforced materials such as carbon nanofibers, ceramic nanoparticles, carbon
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nanotubes (CNTs), and graphenes attracted the attention of most researchers
due to their extraordinary electrical and mechanical properties [3–4]. Graphene
has been found to have its in-plane modulus up to 1.06 TPa and carbon nan-
otube is assessed to have a similar stiffness [5]. While CNTs can be considered
as worthy candidates for the polymer matrix reinforcement to improve their me-
chanical characteristics, their uniform distribution in the matrix is challenging
owing to their bundling generated by wall-to-wall Van der Waals interactions.
Therefore, the reinforcement of polymer matrices using 2-D allotropes of carbon
such as graphene has become an area of study [6].

Rafiee et al. [7] performed some pioneering experiments and revealed that
by adding 0.1% weight fraction of GPLs, the stiffness and strength of the rein-
forced polymer composites are similar to the same degree achieved by adding
1% of carbon nanotubes (CNTs) and elastic modulus rises around 31%. This
is because with its two dimensional attributes, distributions of graphene re-
inforcements in a polymer matrix are greatly improved with less agglomera-
tion compared to the one-dimensional anisotropic CNTs. This creates a great
opportunity for the development of advanced lightweight structures made of
graphene based on polymer nanocomposites. Despite its influence in material
design, studies on the performances of graphene-reinforced composite materials
are still limited [8]. Studies can be found in the literature investigating experi-
mentally [9], computationally [10], or analytically [11] the effect of graphene in
nanocomposites.

The buckling and post-buckling analysis of FG GPL-RPC plates resting on
an elastic foundation and subjected to uniaxial compression in thermal envi-
ronments were studied by Shen et al. [12] through careful selection of material
properties of graphene sheets. The governing equations are based on a higher
order shear deformation plate theory with a von Karman type of kinematic non-
linearity. The presented results illustrate that the functionally graded graphene
reinforcement has a substantial effect on the buckling load as well as post buck-
ling strength of the plate. Wu et al. [13] investigated thermal buckling and
post-buckling behaviors of GPL-RPC plates. GPL reinforcements are assumed
to be uniformly distributed in each GPL-RPC layer but with the concentra-
tion varying from layer to layer. The effective Young’s modulus of GPL-RPCs
is predicted by a modified Halpin-Tsai micromechanics model. The nonlinear
governing equations are derived based on the first-order shear deformation the-
ory. Numerical results show that among the three GPL distribution patterns,
only pattern FG-X with more GPLs distributed near the surface layers is ca-
pable of reinforcing the thermal buckling and post buckling performances of
GPL-RPC plates. Reddy et al. [14] used the finite element method (FEM)
and FSDT to study free vibration analysis of GPL-RPC plates with different
boundary conditions. In this study, the effect of four different layer-wise varia-
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tions of GPL distribution along the thickness as well as all possible plate edge
boundary condition combinations on the natural frequencies of the plate were
investigated. The effective Young’s modulus for each layer and distribution type
was determined using the modified Halpin–Tsai model, in which mass density
and Poisson’s ratio were calculated based on the rule of mixture. Guo et al. [15]
investigated the vibration of laminated composite quadrilateral plates reinforced
with graphene Nano-platelets using the element-free IMLS-Ritz method. They
showed GPL-RPC induces a dramatically higher natural frequency in compari-
son with CNTRC. Additionally, the highest natural frequencies belong to the full
clamped boundary condition and FG-X distribution pattern. Wu et al. [16] in-
vestigated the dynamic stability of FG multilayer GPL-RPC beams in a thermal
environment. Governing equations were derived based on FSDT. Accordingly,
adding more GPLs and distributing them in pattern X can effectively increase
the natural frequency and reduce the principal unstable region. The nonlinear
vibration analysis of FG multilayer GPL-RPC beams was performed by Feng
et al. [17]. In their research, a comprehensive parametric study was conducted
considering the influences of distribution pattern, weight fraction, geometry, and
the size of GPLs together with the total number of layers on the linear and
nonlinear bending performances of the beams. Moreover, Song et al. [18] mod-
eled and investigated the free and forced vibration of FG multilayer GPL-RPC
rectangular plates. The effects of GPL distribution pattern, weight fraction, ge-
ometry, size, and the total number of layers on the forced and free vibration
of FG multilayer GPL-RPC plates were analyzed.

Yang et al. [19] investigates the buckling and post-buckling behaviors of
functionally graded multilayer nanocomposite beams reinforced with a low con-
tent of GPLs resting on an elastic foundation. The results show that GPLs have
a remarkable reinforcing effect on the buckling and post-buckling of nanocom-
posite beams. The nonlinear instability of FG GPL-RPC shells under an axial
compressive load is examined by Sahmani and Aghdam [20]. It is observed that
for both nonlocality and strain gradient size dependencies, the maximum and
minimum size effects on the critical buckling loads are corresponding to FG-X
and FG-O nanoshells, respectively. The terms FG-O and FG-X denote tothe
GPL distribution patterns, which the FG-O model has GPLs enrich at the cen-
tral layer of the plate, and FG-X has GPLs enrich at the top and bottom layers
of the plate. Song et. al. [21] investigates the biaxially compressed buckling and
post-buckling behaviors of FG multilayer composite plates reinforced with a low
content of GPLs that are randomly oriented and uniformly dispersed in the poly-
mer matrix within each layer. The effects of GPL weight fraction, distribution
pattern, geometry, and size as well as the total number of layers on the buck-
ling and post-buckling behaviors of FG GPL-RPC plates are examined in detail.
Gholami and Ansari [22] examine the geometrically nonlinear harmonically



474 T. Farsadi, D. Asadi, H. Kurtaran

excited vibration of the third-order shear deformable multilayer GPL-RPC rect-
angular plates with different edge conditions. The considered multilayer plate is
composed of a mixture of an isotropic polymer matrix and GPLs in each layer.
They found out that, to more increase the bending stiffness and strength of
FG GPL-RPC plates, it is better to distribute more GPL nanofillers near the
upper and bottom surfaces instead of middle layers. As a sequence, the plate
with FG-X distribution pattern has the highest bending stiffness, highest nat-
ural frequency, and lowest nonlinear hardening behavior. A nonlinear buckling
analysis for a clamped and simply supported FG porous GPL-RPC cylindrical
shell is performed by Zhou et al. [23]. Arefi et al. [24] analyzes the linear free
vibration behavior of FG polymer composite nanoplates reinforced with graphene
nanoplatelets (GNPs), resting on a Pasternak foundation. The numerical investi-
gation shows that an FG-X pattern yields to the maximum natural frequencies,
among the analyzed distributions, due to the higher bending stiffness of the
composite material under this reinforcement pattern. Thai et al. [25] present
the size-dependent model to study the multilayer FG GPL-RPC microplates.
Cong and Duc [26] investigate the nonlinear dynamic response and vibration
of FG multilayer nanocomposite plates reinforced with a low content of GPLs.
The transient in-plane responses of multilayer FG GPL-RPC curved beams in
a thermal environment under a concentrated moving load are investigated by
Bahranifard et al. [27].

Curved panels are widely used as the main components in aerospace and other
modern industries. Leissa and Kadi [28] followed a shallow shell theory in order
to study the effect of the curvature on the natural frequencies of curved shells.
The analysis was extended to the non-linear domain by means of the Galerkin
procedure and numerical integration in time. Lau and Cheung [29] investigated
the free vibration behavior of simply supported shallow shells of rectangular
planform. In [30], the effect of the thickness and the curvature upon the large-
amplitude free vibrations of shallow shells was studied. Readers interested in
wider reviews on vibration of curved shells and shallow shells should refer [31, 32].
Recently Farsadi et. al. [33] have conducted a study on the fundamental natural
frequencies of composite curved panels.

The present work uses the Generalized Differential Quadrature (GDQ) me-
thod and the virtual work principle to study variations of the nonlinear frequency
as the oscillation amplitude changes in FG multilayer GPL-RPC curved cylin-
drical panels at all clamped (CCCC), clamped-free-clamped-free (CFCF), and
free-clamped-free-clamped (FCFC) boundary conditions. For the sake of brevity,
only the fundamental frequency is discussed in the present study. Green’s non-
linear strain-displacement relations are employed to formulate the mathematical
model of the panel. The governing equations of motion of the GPL-RPC cylin-
drical panel are obtained by utilizing the virtual work principle. According to



Frequency study of functionally graded multilayer graphene. . . 475

our previous studies [34–37], spatial derivatives in the equation of motion are
substituted by a weighted expansion according to the method of GDQ.

Few literature is available for using numerical methods to investigate FG
GPL-RPC structures [6]. To the best of the authors’ knowledge, this is the first
instance of studying the nonlinear fundamental frequencies of FG GPL-RPC
cylindrical panels with different curvature radius ratios and boundary conditions.
To date, no research can be found in the open literature about the nonlinear
analysis of large deflection of FG multilayer GPL-RPC cylindrical panels in free
vibration analysis.

2. Material properties of the GPL-RPCS

Multilayer Functionally Graded (FG) Graphene Nano-Platelet (GPL) com-
posite panel is considered. The panel includes NL layers as shown in Fig. 1. To
study the effect of the GPL dispersal on the mechanical behaviors of FG multi-
layer GPL-RPC cylindrical panels, four distribution patterns of GPL nanofillers
across the panel thickness namely, UD, FG-O, FG-X, and FG-A are introduced.
In the case of UD, the GPL content in all layers is the same. It can be observed
that UD is a special case as an isotropic homogeneous panel. The FG-O contains
the minimum GPL contents on both top and bottom layers of the plane and the
highest GPL weight fraction in the middle-plane of the panel. The FG-X has
GPLs enrich at the top and bottom layers of the panel, while Young’s modulus
of FG-A increases from the bottom layer to the top layer. Besides, it is seen that
three patterns including UD, FG-O, and FG-X are symmetric to the mid-surface
of the panel, except for FG-A. The representation of four distribution patterns
of GPL nanofillers is provided in Fig. 1.

Fig. 1. Panel thickness view with four GPL distribution patterns.
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The volume fractions of GPLs of the k -th layer corresponding to four con-
sidered GPL distribution patterns can be determined as:

UD: V
(k)

GPL = V T
GPL,

FG-X: V
(k)

GPL = 2V T
GPL|2k −NL − 1|/NL,(2.1)

FG-O: V
(k)

GPL = 2V T
GPL(1− |2k −NL − 1|/NL),

FG-A: V
(k)

GPL = V T
GPL(2k − 1)/NL,

in which k = 1, 2, 3, . . . , NL. V T
GPL stands for the total volume fraction of GPLs

and is calculated as:

(2.2) V T
GPL =

wGPL

wGPL + (1− wGPL)
(ρGPL
ρM

) ,
where the ρGPL, ρM , and wGPL stand for the mass densities of GPL, matrix,
and GPL weight fraction, respectively.

Effective Young’s modulus of GPL-RPC can be theoretically determined by
applying the Halpin–Tsai micromechanics approach as (see Appendix B),

(2.3) E(k)
e =

3

8

(
1 + ξLηLV

(k)
GPL

1− ηLV (k)
GPL

)
︸ ︷︷ ︸

longitudinal

EM +
5

8

(
1 + ξT ηTV

(k)
GPL

1− ηTV (k)
GPL

)
︸ ︷︷ ︸

transverse

EM ,

where the ηL and ηT are determined by using the following equations,

(2.4) ηL =
EGPL/EM − 1

EGLP/EM + ξL
, ηT =

EGPL/EM − 1

EGPL/EM + ξT
,

where, EGPL and EM stand for Young’s moduli of the GPLs and polymer matrix,
respectively. Moreover, ξL and ξT are the internal factors, which depend on both
size and geometry of GPLs nanofillers formulated as:

(2.5) ξL = 2

(
aGPL

hGPL

)
, ξT = 2

(
bGPL

hGPL

)
,

where hGPL, aGPL and bGPL are the thickness, width and length of the GPLs,
respectively. Also, the effective mass density ρ

(k)
e and effective Poisson’s ratio

ν
(k)
e are calculated by employing the rule of the mixture as follows

(2.6)
ρ(k)
e = ρGPLV

(k)
GPL + ρM (1− V (k)

GPL),

ν(k)
e = νGPLV

(k)
GPL + νM (1− V (k)

GPL).
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3. Governing equations of cylindrical panel

GPL-RPC cylindrical panel is assumed to be as the schematic illustration
given in Fig. 2. According to Fig. 2, an orthogonal fixed coordinate curvilinear
Cartesian system (x, ϕ, z) is placed at the root of the panel with a curved width a,
projection of width ap, length b, curvature radius R, and thickness h.

Fig. 2. Cylindrical panel geometry and the respective parameters’ definitions.

The displacement field (u, v, w) of any generic point of the panel not only
on the mid-surface in terms of the position coordinates (x, ϕ, z) and time t are
given as

(3.1)
u(x, ϕ, z, t) = u0(x, ϕ, t) + zϕx(x, ϕ, t),

v(x, ϕ, z, t) = v0(x, ϕ, t) + zϕφ(x, ϕ, t),

w(x, ϕ, z, t) = w0(x, ϕ, t),

where u0, v0, and w0 represent deformations of the mid-plane in x, ϕ and z direc-
tions, respectively, while φx, φϕ are rotations about x and ϕ axes, respectively.
On the other hand, the fully nonlinear Green strain-displacement relations for
a thin elastic cylindrical panel (εzz = 0) are defined as the following

(3.2)


εxx
εϕϕ
εxϕ
εxz
εϕz

 =



∂u
∂x

1
R

(
∂v
∂φ+w

)
1
2

(
∂v
∂x+ ∂u

R∂ϕ

)
1
2

(
∂w
∂x + ∂u

∂z

)
1
2

(
∂v
∂z + ∂w

R∂ϕ

)


+

1

2



(
∂u
∂x)2+

(
∂v
∂x)2+

(
∂w
∂x )2

1
R2

[(
∂v
∂ϕ+w

)2
+
(
∂u
∂ϕ

)2
+
(
∂w
∂ϕ−v

)2]
1
R

[
∂w
∂x

(
∂w
∂ϕ−v

)
+ ∂u
∂ϕ

∂u
∂x+ ∂v

∂x

(
∂v
∂ϕ+w

)]
∂u
∂x

∂u
∂z + ∂v

∂x
∂v
∂z + ∂w

∂x
∂w
∂z

1
R

[
∂v
∂z ( ∂v∂ϕ+w)+ ∂u

∂z
∂u
∂ϕ+ ∂w

∂z

(
∂w
∂ϕ−v

)]


.

The z/R terms are ignored in the strain-displacement equations.
Substituting the displacement field definition as given in Eq. (3.1) into the

strain-displacement relations in Eq. (3.2), the following relations are determined
in terms of the dependent variables u0, v0, w0, φx and φφ
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(3.3)


εxx
εϕϕ
εxϕ
εxz
εϕz

 =



ε
(0)
xx

ε
(0)
ϕϕ

ε
(0)
xϕ

ε
(0)
xz

ε
(0)
ϕz


+ z



ε
(1)
xx

ε
(1)
ϕϕ

ε
(1)
xφ

ε
(1)
xz

ε
(1)
ϕz


,

where the strains are defined as given in Eq. (3.4). Note that the subscript fol-
lowing each variable represents differentiation with respect to the corresponding
coordinate

(3.4)



ε
(0)
xx

ε
(0)
ϕϕ

ε
(0)
xϕ

ε
(0)
xz

ε
(0)
ϕz


=

1

2



2u0,x+u2
0,x+v2

0,x+w2
0,x

2
R(v0,ϕ+w0)+ 1

R2 [u2
0,ϕ+(v0,ϕ+w0)2+(w0,ϕ−v0)2]

u0,ϕ

R +v0,x+ 1
R [u0,xu0,ϕ+v0,x(v0,ϕ+w0)+w0,x(w0,φ−v0)]

φx+w0,x+u0,xφx+v0,xφϕ
1
R [Rφϕ+w0,ϕ+u0,ϕϕx+(v0,ϕ+w0)φϕ]


,



ε
(1)
xx

ε
(1)
ϕϕ

ε
(1)
xϕ

ε
(1)
xz

ε
(1)
ϕz


=

1

2



2 [φx,x+u0,xφx,x+v0,xφϕ,x]
2
Rφϕ,ϕ+ 2

R2 [u0,ϕφx,ϕ+(v0,ϕ+w0)φϕ,ϕ−(w0,ϕ−v0)φϕ]
1
R [Rφϕ,x+φx,ϕ+u0,ϕφx,x−w0,xφϕ+φx,ϕu0,x

+v0,xφϕ,ϕ+φϕ,x(w0+v0,ϕ)]

φx,xφx+φϕ,xφϕ
1
R(φxφx,ϕ+φϕφϕ,ϕ)


.

Using the following constitutive equation for panels, one may determine the
stress components in any desired lamina by the following relation

(3.5)


σxx
σϕϕ
σϕz
σxz
σxϕ



(k)

=


Q

(k)
11 Q

(k)
12 0 0 0

Q
(k)
12 Q

(k)
22 0 0 0

0 0 Q
(k)
44 0 0

0 0 0 Q
(k)
55 0

0 0 0 0 Q
(k)
66




εxx
εϕϕ
εϕz
εxz
εxϕ



(k)

,

where the the plane stress-reduced stiffnesses at k-th layer (Q(k)
ij ) are defined as

Q
(k)
11 = Q

(k)
22 =

E
(k)
e

1− ν(k)2

e

,(3.6)

Q
(k)
12 =

ν
(k)
e E

(k)
e

1− ν(k)2

e

,(3.7)
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Q
(k)
44 = Q

(k)
55 = Q

(k)
66 =

E
(k)
e

2(1 + ν
(k)
e )

,(3.8)

where Ee and νe being effective Young’s modulus and Poisson’s ratio, respec-
tively.

In the present study, the perfect interface assumption between the composite
layers is considered. But in reality, the bonding between the plies in a layered
structure may not always be strong enough to preserve the structural integrity
and prevent relative displacements of the adjacent layers. This can be due to
manufacturing defects, or damage caused by in-service loads and environmental
effects; or it can be a consequence of the presence of compliant elastic or inelastic
interlayers. The zigzag theories offer a good compromise between computational
simplicity and accuracy in dealing with a multilayered structures with continu-
ous imperfect interfaces [38–41]. The present study neglects the so-called zigzag
effects through the thickness displacement field caused by the differences in the
shear rigidity of the layers.

To obtain the governing equations of motion for the cylindrical panel, the
Hamiltonian of the structure is constructed as follows

(3.9) δH =

t2∫
t1

δ(T − V +Wnc) dt = 0,

where T and V are the kinetic and potential energies of the shell and Wnc is
the work done by non-conservative external forces, which are neglected in the
present study. The kinetic energy of the shell is defined as,

(3.10) T =
1

2

a∫
0

b∫
0

Nl∑
k=1

zk∫
zk−1

ρ(k)(u̇2 + v̇2 + ẇ2)R dz dx dϕ,

where the over dot symbol represents differentiation with respect to the temporal
coordinate and the mass density of the k-th layer is denoted by ρ(k). Substituting
(3.1) into the kinetic energy expression given in Eq. (3.8) and performing some
manipulations gives the following variational representation of the kinetic energy

(3.11) δT = −
a∫

0

b∫
0

 I0(ü0δu0 + v̈0δv0 + ẅ0δw0)

+ I1(φ̈xδu0 + φ̈ϕδv0 + ü0δφx + v̈0δφϕ)

+ I2(φ̈xδφx + φ̈ϕδφϕ)

R dx dϕ,

where the following definitions are employed for the mass moments of inertia Ij
(j = 0, 1, 2),

(3.12) {I0, I1, I2} =

n∑
k=1

zk∫
zk−1

{1, z, z2}ρ(k) dz.
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The next relation required to construct the Hamiltonian of the system is
the elastic strain potential energy expression. The final potential expression in
variational representation is defined as

(3.13) δV =

a∫
0

b∫
0

Nl∑
k=1

zk∫
zk−1

 σ
(k)
xx (δε

(0)
xx + zδε

(1)
xx ) + σ

(k)
ϕϕ(δε

(0)
ϕϕ + zδε

(1)
ϕϕ)

+ σ
(k)
xϕ (δε

(0)
xϕ + zδε

(1)
xϕ) + σ

(k)
xz (δε

(0)
xz + zδε

(1)
xz )

+ σ
(k)
ϕz (δε

(0)
ϕz + zδε

(1)
ϕz )


×R dz dx dϕ.

Considering the shear correction factor Ks = 5/6 and using the definition of
force and moment resultants as the following,

(3.14)


N

(i)
xx

N
(i)
ϕϕ

N
(i)
xϕ

 =

Nl∑
k=1

zk∫
zk−1

zi


σ

(k)
xx

σ
(k)
ϕϕ

σ
(k)
xϕ

 dz, i = 0, 1,

{
Q

(i)
xz

Q
(i)
ϕz

}
=

Nl∑
k=1

zk∫
zk−1

ziKs

{
σ

(k)
xz

σ
(k)
ϕz

}
dz, i = 0, 1.

Equation (3.11) is recast to the following form,

(3.15) δV =

a∫
0

b∫
0


N

(0)
xx δε

(0)
xx +N

(1)
xx δε

(1)
xx +N

(0)
ϕϕ δε

(0)
ϕϕ +N

(1)
ϕϕ δε

(1)
ϕϕ

+N
(0)
xϕ δε

(0)
xϕ +N

(1)
xϕ δε

(1)
xϕ +Q

(0)
xz δε

(0)
xz +Q

(1)
xz δε

(1)
xz

+Q
(0)
ϕz δε

(0)
ϕz +Q

(1)
ϕz δε

(1)
ϕz

R dx dϕ.

According to Hamilton’s principle given in Eq. (3.7), the summation of internal
and inertial forces leads to the following integral representation of the governing
equation of motion

(3.16)
a∫

0

b∫
0



N
(0)
xx δε

(0)
xx +N

(1)
xx δε

(1)
xx +N

(0)
ϕϕ δε

(0)
ϕϕ +N

(1)
ϕϕ δε

(1)
ϕϕ

+N
(0)
xϕ δε

(0)
xϕ +N

(1)
xϕ δε

(1)
xϕ +Q

(0)
xz δε

(0)
xz +Q

(1)
xz δε

(1)
xz

+Q
(0)
ϕz δε

(0)
ϕz +Q

(1)
ϕz δε

(1)
ϕz

+ I0(ü0δu0 + v̈0δv0 + ẅ0δw0)

+ I1(φ̈xδu0 + φ̈ϕδv0 + ü0δφx + v̈0δφϕ)

+ I2(φ̈xδφx + φ̈ϕδϕϕ)


R dx dϕ = 0.

Substituting variations of the strain components from Eq. (3.4) into Eq. (3.14)
gives the following explicit integral expression,
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(3.17)
a∫

0

b∫
0



(I0ü0 + I1φ̈x)δu0 + µ1δu0,x + µ2δu0,ϕ

+ (µ3 + I1φ̈ϕ + I0v̈0)δv0 + µ4δv0,x + µ5δv0,ϕ

+ (µ6 + I0ẅ0)δw0 + µ7δw0,x + µ8δw0,ϕ

+ (µ9 + I1ü0 + I2φ̈x)δφx + µ10δφx,x

+ µ11δφx,ϕ + (µ12 + I2φ̈ϕ + I1v̈0)δφϕ

+ µ13δφϕ,x + µ14δφϕ,ϕ


R dx dϕ = 0,

where µi (i = 1, 2, . . . , 14) are defined in Appendix A.
A geometric mapping based on previous research by Kurtaran [34] is ap-

plied to facilitate numerical integrations. By implementing the proposed map-
ping, the curvilinear coordinate system is transformed into a bi-unit square
domain. Interested readers are referred to [34] for detailed discussions on the
mapping relations and sequences.

4. Solution methodology

The solution methodology includes the discretization of the curvilinear do-
main using the Gauss-Lobatto grid point distribution, to accommodate the ap-
plication of the GDQ method to calculate the partial derivatives at grid points,
and evaluate the integrals of the governing equation of motion. In what follows,
a review of the GDQ is presented and then, the overall outline of the modal
analysis is discussed.

4.1. Generalized differential quadrature (GDQ) method

To calculate the derivatives of the field variables in Eq. (3.17), an improved
version of the GDQ method is implemented. Before the application of the GDQ
method, similar to Finite Difference methods, the FG panel is discretized to grid
points, representing the points, where the field variables and their derivative
values are calculated. According to the GDQ method, r-th order derivative of
a function f(ξ) with n discrete grid points can be introduced as

(4.1)
(
∂f r(ξ)

∂ξr

)
ξi

=

n∑
j=1

C
(r)
ij fj ,

where ξi are the discrete points in the computational domain and C(r)
ij , fj are the

weighting coefficients and function values at the corresponding points, respec-
tively. An explicit formula for the weighting coefficients based on the Lagrange
polynomial for the first-order derivative, i.e. r = 1, is given as

(4.2) C
(1)
ij =

φ(ξi)

(ξi − ξj)φ(ξj)
, (i 6= j)
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where

(4.3) Φ(ξi) =
n∏
j=1

(ξi − ξj) (i 6= j).

To determine the weighing coefficient values (matrix) for higher-order deriva-
tives, the following recursive relations are proposed in the GDQ method

(4.4)
C

(r)
ij = r

[
C

(r−1)
ii C

(1)
ij −

C
(r−1)
ij

ξi − ξj

]
(i 6= j),

C
(r)
ii = −

∑
j=1, i 6=j

C
(r)
ij .

According to Fig. 3 partial derivates at a point (ξi, ηj) can be defined as follows,
where nξ and nη denote grid numbers in ξ and η directions, respectively,(

∂f r(ξ, η)

∂ξr

)
ξi,ηj

=

nξ∑
k=1

C
(r)
kj fkj ,(

∂fs(ξ, η)

∂ηs

)
ξi,ηj

=

nη∑
m=1

C
(s)
imfim,(4.5)

(
∂f (r+s)(ξ, η)

∂ξr∂ηs

)
ξi,yj

=
∂r

∂ξr

(
∂sf

∂ηs

)
=

nξ∑
k=1

nη∑
m=1

C
(r)
kj C

(s)
imfkm.

Note that the variables r and s denote derivative orders with respect to the
variables ξ and η.

Fig. 3. Grid point distribution and the local coordinate.

One last important point is that the partial derivatives of a general function f
with respect to the variables x, ϕ are calculated applying the GDQ method at
a grid point as follows
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∂f

∂x

)
ij

=
1

Jij

[(
∂ϕ

∂η

)
ij

nξ∑
k=1

C
(1)
kj fkj −

(
∂ϕ

∂ξ

)
ij

nη∑
m=1

C
(1)
im fim

]
,(4.6)

(
∂f

∂ϕ

)
ij

=
1

Jij

[(
∂x

∂ξ

)
ij

nη∑
m=1

C
(1)
im fim −

(
∂x

∂η

)
ij

nξ∑
k=1

C
(1)
kj fkj

]
.(4.7)

4.2. Free vibration analysis

The described GDQ method is applied to the governing equation in Eq.
(3.15) to determine the structural matrices. The nonlinear free vibration theory
applied in the present work follows the procedure given in [33, 34, 42]. For the
free vibration analysis of a panel, it can be assumed that the displacements may
be expressed as:

(4.8) w(x, ϕ, t) = Q(x, ϕ)u(t),

where Q(x, ϕ) is the vibration pattern (the shape function) of a panel and is the
harmonic time function. It can be seen in the above equation that the temporal
and spatial variables in the transverse displacement function w(x, ϕ, t) are as-
sumed to be separable. u(t) often takes the form of a Fourier sine series as used
in [33, 34]. The numerical results from [42] indicates that there is only a very
small difference between using the first term and the first two terms in the trun-
cated Fourier sine time series. In this study, for simplicity, only one harmonic
component is used. Then the imposed harmonic vibration response is assumed
to be in the following form,

(4.9) u = ū sin(ωt).

Accordingly, the nonlinear system of equations is determined as,

(4.10) Mü+ [KL + K1
NL(u) + K2

NL(u2)]u = 0,

where KL, K1
NL(u) and K2

NL(u2) are respectively the linear and nonlinear stiff-
ness matrices.

Substituting Eq. (4.9) into Eq. (4.10), the expanded view of the governing
equation takes the following arrangement,

(4.11) − ω2Mū sin(ωt) + [KKL + K1
NL(ū sin(ωt))

+ K2
NL(ū2 sin2(ωt))]ū sin(ωt) = 0.

In Eq. (4.11) nonlinear stiffness matrices K1
NL(u) and K2

NL(u2) are time-depen-
dent. Putting the left-hand side term equal to Γ as:

Γ = −ω2Mū sin(ωt)(4.12)

+ [KL +K1
NL(ū sin(ωt)) +K2

NL(ū2 sin2(ωt))]ū sin(ωt)
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and considering the following expression,

(4.13)

T/4∫
0

Γ sin(ωt) dt = 0, T = 2πω.

One finds an eigenvalue problem as established in Eq. (4.14),

(4.14)
[
−ω2M + (KL +

8

3π
K̄1
NL +

3

4
K̄2
NL)

]
ū = 0,

where the over-bar symbol on the nonlinear stiffness matrices shows that the
mentioned matrices are now in the frequency domain. Solving the presented
nonlinear eigenvalue problem, the nonlinear frequency ω is determined.

In Eq. (4.14), the nonlinear stiffness matrices are a function of the normal-
ized mode shapes. In linear eigenvalue problems, the eigenvalue and eigenvector
equations generate a series of eigenvalues and their respective eigenvectors simul-
taneously, but from Eq. (4.14) a single eigenvalue and its corresponding eigen-
vector may be obtained iteratively. To calculate the nonlinear stiffness matrix
in the iteration, the eigenvector cannot be used directly, it needs to be scaled
according to the specified vibration amplitude at a certain location of the panel.
When the fundamental nonlinear resonant frequency and mode shape are the
objective, the displacement amplitude at the center of the panel may be used to
scale the mode shape.

5. Numerical results

In this section, the nonlinear frequency behavior results are presented by
applying the abovementioned formulation for the GPL-RPC cylindrical panels
with different boundary conditions including CCCC, CFCF, and FCFC. The
accuracy of the developed computer code is judged by the following verification
studies.

5.1. Structural model verification

To verify the FG GPL-RPC structural model, an analytical solution [43]
based on FSDT (5 DOFs), an analytical solution [24] based on refined plate
theory (4 DOFs), and NURBS formulation based on the four-variable refined
plate theory [8] are used. In the case of length-to-thickness ratios, a/h = 10, 20,
50, 100 are considered. The radius of curvature in the presented formulation is
assumed to be a very large magnitude (approaching infinity). This simplifies the
panel’s equations to its equivalent plate configuration. Table 1 lists the effects
of a/h ratio on the fundamental natural frequencies of the FG GPL-RPC with



Frequency study of functionally graded multilayer graphene. . . 485

four GPL distribution patterns including UD, FG-O, FG-X, and FG-A. It can be
observed that the presented results match very well to those of referenced ones
for all four patterns. Fundamental natural frequencies increase once GPLs rein-
forcing nanofillers are added into the polymer matrix of the plate and decrease
with a rise of a/h ratio.

Table 1. The fundamental natural frequancies ω = ωh
√
ρM/EM

of the square plate.

a/h Method UD FG-O FG-X FG-A
10 present 0.1171 0.0946 0.1350 0.1135

[8] 0.1216 0.1023 0.1366 0.1118
[42] 0.1216 0.1020 0.1378 1.1118
[24] 0.1216 0.1023 0.1365 0.1118

20 present 0.0306 0.0245 0.0356 0.0296
[8] 0.0312 0.0261 0.0355 0.0286

50 present 0.005 0.004 0.0058 0.0048
[8] 0.005 0.0042 0.0058 0.0046

100 present 0.0013 0.001 0.0015 0.0012
[8] 0.0013 0.001 0.0014 0.0012

To verify the geometrically nonlinear model, Fig. 4 compares the measured
amplitude-dependent fundamental nonlinear frequency given by Han and

Fig. 4. The geometrically nonlinear fundamental resonant frequencies of the present study
and the references [42, 44].
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Petyt [42] and Benamar [44] for the isotropic rectangular plate. Dimensions
of the plate are a = 0.486 m, b = 0.3229 m, and h = 1.2 mm. The mechanical
properties of the plate are E = 210 GPa, ν = 0.3, ρ = 7800 kg ·m−3. It is clear
from the given results that the outcomes of the present study are in reasonable
agreement with the literature.

Now that the structural model is verified in various plate configurations, it
is time to take a look at the panel’s formulation and find a means of verifica-
tion. Table 2 shows the fundamental natural frequencies of a cylindrical panel,
compared with those of Ribeiro [45] at ap/R = 0.4, 0.2 with h = 1 mm and
ap/R = 0.4, 0.2 with h = 2.5 mm. The material properties are E = 70 GPa,
ν = 0.33, ρ = 2778 kg ·m−3. The small error values confirm that the presented
formulations and solution strategy are correct.

Table 2. Comparision of the fundamental natural frequency in rad/s for a
cylindrical panel.

Study
h = 1 mm h = 2.5mm

ap/R = 0.4 ap/R = 0.2 ap/R = 0.4 ap/R = 0.2

[44] 1137.61 865.359 2044.97 1662.75
Present 1136.76 864.25 2036.16 1660

Difference [%] −0.07 −0.13 −0.43 −0.17

Further verification is performed for the free vibration analysis of the mul-
tilayered GPL reinforced cylindrical panels. Table 3 shows the first two dimen-
sionless linear natural frequencies of the cylindrical panels with h/R = 0.002,
b/R = 0.1 and simply supported, and clamped boundary conditions in compar-
ison with those of Van Do and Lee [46]. The GPL weight fraction is set to
be 1%.

Table 3. Dimensionless natural frequencies of the cylindrical panels with simply
supported and clamped boundary conditions.

BCs. Mode Method UD FG-O FG-X FG-A

SSSS
1

present 13.6116 11.6927 15.2863 12.6432
[45] 13.6144 11.6951 15.2899 12.6462

2
present 31.4785 26.2493 35.9341 28.8675
[45] 31.4758 26.2453 35.9313 28.8633

CCCC
1

present 24.6904 21.2045 27.7198 22.9394
[45] 24.6929 21.2067 27.7234 22.9424

2
present 46.6909 39.0285 53.2120 42.8710
[45] 46.6976 39.0264 53.2100 42.8697
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5.2. Results and discussions

The frequency characteristics of a cylindrical panel with three boundary con-
ditions (CCCC, CFCF and FCFC) are considered. The nonlinear frequency be-
havior of the cylindrical panels with different GPL distribution patterns namely,
UD, FG-O, FG-X, and FG-A and volume fractions wGPL0 << 1% are separately
studied.

In the following provided numerical results, epoxy is chosen as the polymer
matrix with Young’s modulus of EM = 3.0 GPa, Poisson’s ratio of νM = 0.34
and density of ρM = 1200 kg/m3. The material properties and geometries of
GPLs are chosen as Young’s modulus of EGPL = 1.01 TPa, Poisson’s ratio of
νGPL = 0.186, and density of ρGPL = 1060 kg/m3, length of aGPL = 2.5 µm, the
width of bGPL = 2.5 µm, and thickness of hGPL = 1.5 nm. The total thickness of
the GPL-RPC cylindrical panel is assumed to be a/h = 100 and the total number
of layers NL = 10 are utilized in the following numerical results. Moreover, for
the subsequent results, the non-dimensional linear and nonlinear frequencies are
defined as ω̄ = ωh

√
ρM/EM .

In a context where the structural performance of the curved panel is strictly
related to the boundary conditions, we apply three different boundary conditions
for the numerical study, namely CCCC, CFCF and FCFC where C and F denote
clamped and free boundary conditions, respectively. This implies the CCCC
boundary conditions,

(5.1)
x = 0, a→ u0 = 0, v0 = 0, w0 = 0, φx = 0, φϕ = 0,

y = 0, b→ u0 = 0, v0 = 0, w0 = 0, φx = 0, φϕ = 0,

the CFCF,

(5.2)
x = 0, a→ u0 = 0, v0 = 0, w0 = 0, φx = 0, φϕ = 0,

y = 0, b→ −,

and the FCFC,

(5.3)
x = 0, a→ −,
y = 0, b→ u0 = 0, v0 = 0, w0 = 0, φx = 0, φϕ = 0.

Figures 5–7 illustrate the effect of the GPL weight fraction on the free vibra-
tion response of FG multilayer GPL-RPC cylindrical panel with CCCC, CFCF,
and FCFC boundary conditions, respectively. Four distribution patterns UD,
FG-O, FG-X, and FG-A with the constant GPL length to the width ratio of
aGPL/bGPL = 1 are considered in the panel’s material. The curvature radius
ratios of R/a = 2, 5, 20,∞ are considered in the geometrical configuration of
the cylindrical panel. Figures 5–7 provide a comparison plot for the linear and
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(a)

(b)

Fig. 5. Effect of GPL distribution pattern on the linear and nonlinear fundamental
non-dimensional frequencies and mode shapes of FG multilayer GPL-RPC plates with CCCC
boundary conditions wmax/h = 1, aGPL/bGPL = 1; (a) R/a = 2, (b) R/a = 5, (c) R/a = 20

and (d) R/a =∞.

nonlinear fundamental frequency versus the GPL weight fraction percentage
(wGPL0 � 1%). The nondimensional oscillation amplitude (wmax/h) is consid-
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(c) (d)

Fig. 5 [cont.]

ered to be 1, where wmax is the oscillation amplitude at the panel’s center in the
nonlinear fundamental mode of oscillation. The oscillation amplitude (wmax) is
imposed on the governing system as an initial condition. Therefore, the nonlinear
frequency is calculated in each new initial conditions in nonlinear analysis. This
indicates that the fundamental nonlinear frequency depends upon the amplitude
of vibration, which is significantly different from the linear dynamic response.

Generally, it is observed that the linear and nonlinear fundamental frequen-
cies of FG multilayer GPL-RPC panels continuously increase as the GPL weight
fraction increases for all curvature ratios that depicts hardening behavior. It can
be explained by the fact that adding more GPLs results in increasing the bend-
ing stiffness of the considered system. There are local peaks in the nonlinear
frequencies in some case studies (for example, Fig. 5a, FG-A (nonlinear) branch
and Fig. 5b, FG-X (nonlinear) branch). This behavior is due to the variation in
the stiffness value of the GPL-RPC panels with different distribution patterns at
different wGPL percentages and the panel structures endeavor to the multiple sta-
bility state. These phenomena are termed as “mode switching” as mentioned in
the literature. From Fig. 5a and b, it can be infered that by increasing the GPL
weight fraction, the nonlinear frequencies and associated mode shapes change
drastically in specific cases (for example Fig. 5a, FG-A (nonlinear) branch and
Fig. 5b, FG-X (nonlinear) branch). Here the two branches are considered as case
studies to show the mode switching phenomenon and its effects on sudden drops
and growths in frequency diagrams. Accordingly, the switch among mode shapes
are obvious in the figures.

The results indicate that with the increase of the amount of GPLs, the dif-
ferences between frequencies predicted by linear and nonlinear models and con-
sequently the hardening behavior decrease.
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(a) (b)

(c) (d)

Fig. 6. Effect of GPL distribution pattern on the linear and nonlinear fundamental
non-dimensional frequencies of FG multilayer GPL-RPC plates with CFCF boundary
conditions wmax/h = 1, aGPL/bGPL = 1; (a) R/a = 2, (b) R/a = 5, (c) R/a = 20 and

(d) R/a =∞.

In Figures 5–7, it can be seen that the highest linear fundamental frequencies
belong to the FG-X distribution pattern, which is followed by UD, FG-A, and
FG-O distribution patterns for all curvature ratios and boundary conditions,
respectively. It means that compared to the GPL distribution with more GPL
nanofillers close to the middle plane, the FG-X distribution pattern makes better
use of GPLs as the GPL nanofillers are more dispersed near the top and bottom
surfaces, which are the areas undergoing higher flexural bending. Therefore, it
can be deduced that to increase the total fundamental natural frequency of
GPL-RPC panels, it is more effective to utilize the GPL distribution pattern by
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(a) (b)

(c) (d)

Fig. 7. Effect of GPL distribution pattern on the linear and nonlinear fundamental
non-dimensional frequencies of FG multilayer GPL-RPC plates with FCFC boundary
conditions wmax/h = 1, aGPL/bGPL = 1; (a) R/a = 2, (b) R/a = 5, (c) R/a = 20 and

(d) R/a =∞.

dispersing more GPL nanofillers near the top and bottom surfaces of GPL-RPC
panels. This is the conclusion that is extracted from the linear analysis but for
the nonlinear analysis, there is an irregularity in the frequency curves for GPL
distribution patterns especially in CCCC boundary conditions. The jumps in
the nonlinear frequencies curve are due to the mode switching phenomena. The
nonlinear frequency behavior is strongly dependent on the wGPL percentages.

The curvature radius ratio also affects the fundamental frequency of linear
and nonlinear panel for the different GPL weight fraction. It is observed that
as the radius ratio increases, linear fundamental frequency tends to lower values



492 T. Farsadi, D. Asadi, H. Kurtaran

(a) (b)

(c) (d)

Fig. 8. Effect of GPL distribution pattern on the nonlinear fundamental non-dimensional
frequencies of FG multilayer GPL-RPC panels with CFCF boundary conditions

wGPL = 0.6%, aGPL/bGPL = 1; (a) R/a = 2, (b) R/a = 5, (c) R/a = 20 and (d) R/a =∞.

in all four distribution patterns. So, shallow panels provide higher fundamental
frequencies while stiffness in deep panels reduces significantly. Generally, the
results show that with an increase in the curvature ratio, the differences between
frequencies predicted by linear and nonlinear models increase. Also, in the panels
with CCCC and FCFC edge conditions, the nonlinear hardening-type behavior is
more considerable by increasing the curvature ratios. The differences between the
estimated frequencies by the linear and nonlinear models are more pronounced
in panels with R/a =∞ in all boundary conditions.

The variation in GPL percentages and distribution patterns are found to
affect the nonlinear frequency and degree of hardening. Figure 8 presents the
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effect of the non-dimensional oscillation amplitude wmax/h and GPLs nanofillers
distribution patterns UD, FG-O, FG-X, and FG-A on the fundamental nonlin-
ear frequency of GPL-RPC cylindrical panels with curvature radius ratios of
R/a = 2, 5, 20,∞ and CFCF boundary conditions. In the numerical computa-
tions, the percentage of GPLs is kept constant by wGPL = 0.6%. It is showed
that increasing the curvature radius ratio from R/a = 2 to R/a = ∞ (i.e. flat
plate) results is significantly decreasing the nonlinear frequency due to decreas-
ing the bending rigidity and strength of GPL-RPC cylindrical panels. There
are ups and downs in the nonlinear frequencies of some case studies. This be-
havior is due to the change in a stiffness value of the panel at the higher am-
plitude of vibration and the panel structures dive to the secondary stability
state.

6. Conclusions

In the present study, the effect of graphene platelet (GPL) nanofillers and
their distribution patterns in the matrix on the free vibration of the cylindrical
panel are explored for three types of boundary conditions. Four GPL distribu-
tion patterns namely, UD, FG-O, FG-X, and FG-A are considered. The effective
material properties of GPL-RPC layers are obtained via the modified Halpin–
Tsai micromechanics model and the rule of mixture. The Generalized Differential
Quadrature (GDQ) method and Hamilton’s principle are applied to study the
variation of the fundamental frequencies of the cylindrical panels. The fundamen-
tal amplitude-dependent nonlinear frequency behavior of the GPL-RPC panel is
studied and compared. According to the results, different boundary conditions,
GPL distribution pattern, GPL weight fraction, and radius ratios significantly af-
fect the curved panel’s natural and nonlinear fundamental frequencies and mode
shapes as well as affecting the maximum achievable frequency.
• GPL volume fraction plays an important role on significantly improving

the linear vibration performance of the curved panels.
• Generally, the FG-X model with high GPL concentration in the layers

close to the top and bottom shows the best performance in increasing the
fundamental natural frequencies both linearly and nonlinearly.
• The fundamental natural frequency decreases as the radius curvature ratio

increases from 2 to∞ for almost all GPL models and boundary conditions.
• In the panels with CCCC and FCFC edge conditions, the nonlinear harden-

ing-type behavior is more considerable by increasing the curvature ratios.
• The obtained results reveal that panels with moderate curvature ratios are

more prone to experience mode switchings.
• The nonlinear results in CFCF configuration show that, generally for ra-

dius ratios from 2 to ∞, increase of an oscillation amplitude leads to an



494 T. Farsadi, D. Asadi, H. Kurtaran

increase of nonlinear stiffness (hardening) and thus higher nonlinear fre-
quency ratios are achieved. This is not valid when the mode switching
phenomenon happens in the panels with curvature ratios of 5 and 20.

Appendix A

Definitions of the µi, i = 1, 2, . . . , 14 parameters used in Eq. (3.15) are pre-
sented in terms of the displacement variables as well as force/moment resultants

µ1 = N (0)
xx (1 + u0,x) +N (1)

xx φx,x +
1

2R
(N (0)

xϕ u0,ϕ +N (1)
xϕ φx,ϕ +RQ(0)

xz φx),

µ2 =
1

2R2
[2N (0)

ϕϕu0,ϕ + 2N (1)
ϕϕφx,ϕ +R(N (0)

xϕ +N (0)
xϕ u0,x +N (1)

xϕ φx,x +Q(0)
ϕzφx)],

µ3 =
1

2R2
[2N (1)

ϕϕφϕ − 2N (0)
ϕϕ (w0,ϕ − v0)−RN (0)

xϕw0,x],

µ4 = N (0)
xx v0,x +N (1)

xx φϕ,x +
N

(0)
xϕ

2
+
Q

(0)
xz

2
φϕ +

1

2R
[N (0)

xϕ (v0,ϕ + w0) +N (1)
xϕ φϕ,ϕ],

µ5 =
N

(0)
ϕϕ

R
+
N

(0)
ϕϕ

R2
(v0,ϕ + w0) +

N
(1)
ϕϕ

R2
φϕ,ϕ +

N
(0)
xϕ

2R
v0,x +

N
(1)
xϕ

2R
φϕ,x +

Q
(0)
ϕz

2R
φϕ,

µ6 =
N

(0)
ϕϕ

R
+
N

(0)
ϕϕ

R2
(v0,ϕ + w0) +

N
(1)
ϕϕ

R2
φϕ,ϕ +

N
(0)
xϕ

2R
v0,x +

N
(1)
xϕ

2R
φϕ,x +

Q
(0)
ϕz

2R
φϕ,

µ7 = N (0)
xx w0,x +

N
(0)
xϕ

2R
(w0,ϕ − v0)− N

(1)
xϕ

2R
φϕ +

Q
(0)
xz

2
,

µ8 =
N

(0)
ϕϕ

R2
(w0,ϕ − v0)− N

(1)
ϕϕ

R2
φϕ +

N
(0)
xϕ

2R
w0,x +

Q
(0)
ϕz

2R
,

µ9 =
Q

(0)
xz

2
+
Q

(0)
xz

2
u0,x +

Q
(1)
xz

2
φx,x +

Q
(0)
ϕz

2R
u0,ϕ +

Q
(1)
ϕz

2R
φx,ϕ,

µ10 = N (1)
xx +N (1)

xx u0,x +
N

(1)
xϕ

2R
u0,ϕ +

Q
(1)
xz

2
φx,

µ11 =
N

(1)
ϕϕ

R2
u0,ϕ +

N
(1)
xϕ

2R
+
N

(1)
xϕ

2R
u0,x +

Q
(1)
ϕz

2R
φx,

µ12 = −N
(1)
ϕϕ

R2
(w0,ϕ − v0)− N

(1)
xϕ

2R
w0,x +

Q
(0)
xz

2
v0,x +

Q
(1)
xz

2
φϕ,x

+
Q

(0)
ϕz

2
+
Q

(0)
ϕz

2R
(v0,ϕ + w0) +

Q
(1)
ϕz

2R
φϕ,ϕ,

µ13 = N (1)
xx v0,x +

N
(1)
xϕ

2
+
N

(1)
xϕ

2R
(w0 + v0,ϕ) +

Q
(1)
xz

2
φϕ,

µ14 =
N

(1)
ϕϕ

R
+
N

(1)
ϕϕ

R2
(v0,ϕ + w0) +

N
(1)
xϕ

2R
v0,x +

Q
(1)
ϕz

2R
φϕ.
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Appendix B

An empirical model shown in Appendix A illustrates the Tsai–Pagano model
[47, 48], which makes a combination of the expected longitudinal to the transver-
sal term in the ratios of 3/8 and 5/8 to predict the Young modulus of polymer
composite containing randomly oriented kenaf or jute fibres, respectively,

E =
3

8
E1 +

5

8
E2,

where E1and E2 are the longitudinal and transversal elastic moduli calculated
by the Halpin–Tsai model.

Fig. 9. Tsai–Pagano elastic modulus versus experimental Young’s modulus for Polymer
composite at each volume fraction [49].

A comparison of the Tsai–Pagano modeled elastic modulus with the experi-
mental Young’s modulus is presented in Fig. 9. The graph shows a good corre-
lation of the Tsai–Pagano model with the experimental results.
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