PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A study on an AR-based circuit practice

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, the number of AR-based practice cases has been increasing. In this paper, the effect of AR-based circuit practice was examined through an experiment with 60 subjects (control group: 30, experimental group: 30). The report score, completion time, question count, and USE questionnaire were used in the analysis. As a result of the experiment, the report score was significantly increased by 15.48% in the experimental group (△report: +18 points) than in the control group (△report: +7 points). Question count decreased twice as much in the experimental group (△question: -18 times) as in the control group (△question: -9 times). The completion time of the experimental group (△time: -16 min) was reduced by approximately 4 min more than that of the control group (△time: -12 min), however, the difference was not statistically significant. The USE questionnaire received evaluations of 6.0 or higher (on a 7-point scale) in all categories (usefulness, ease of use, ease of learning, satisfaction). Therefore, From the experimental results, the proposed AR-based circuit practice is confirmed to be more effective than traditional circuit practice.
Rocznik
Strony
17--27
Opis fizyczny
Bibliogr. 18 poz., fig., tab.
Twórcy
autor
  • Korea University of Technology and Education, Department of Computer Science and Engineering, BioComputing Lab, Republic of Korea
  • Korea University of Technology and Education, Department of Computer Science and Engineering, Institute for Bioengineering Application Technology, BioComputing Lab, Republic of Korea
Bibliografia
  • [1] Álvarez-Marín, A., Velázquez-Iturbide, J. Á., & Campos-Villarroel, R. (2021). Interactive AR app for real-time analysis of resistive circuits. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 16(2), 187-193. https://doi.org/10.1109/RITA.2021.3089917
  • [2] Arifin, S., & Maharani, L. (2021). Assessing user experience of a mobile application using usability questionnaire method. Applied Information System and Management, 4(1), 1-10. https://doi.org/10.15408/aism.v4i1.20265
  • [3] Avilés‐Cruz, C., & Villegas‐Cortez, J. (2019). A smartphone‐based augmented reality system for university students for learning digital electronics. Computer Applications in Engineering Education, 27(3), 615-630. https://doi.org/10.1002/cae.22102
  • [4] Cao, W., & Yu, Z. (2023). The impact of augmented reality on student attitudes, motivation, and learning achievements-a meta-analysis (2016–2023). Humanities and Social Sciences Communications, 10, 352. https://doi.org/10.1057/s41599-023-01852-2
  • [5] Diegmann, P., Schmidt-Kraepelin, M., Eynden, S., & Basten, D. (2015). Benefits of augmented reality in educational environments-a systematic literature review. Wirtschaftsinformatik Proceedings 2015, 103, https://aisel.aisnet.org/wi2015/103
  • [6] Kwak, S. G., & Kim, J. H. (2017). Central limit theorem: the cornerstone of modern statistics. Korean journal of anesthesiology, 70(2), 144-156. https://doi.org/10.4097/kjae.2017.70.2.144
  • [7] Lee, J. O., & Kim, Y. S. (2011). An AR-based wiring practice for PLC training. Journal of International Council on Electrical Engineering, 1(4), 425-429. https://doi.org/10.5370/JICEE.2011.1.4.425
  • [8] Lund, A. M. (2001). Measuring usability with the use questionnaire. Usability interface, 8(2), 3-6.
  • [9] Oh, D., Shim, S., & Choi, H. (2020). Development of augmented reality based electronic circuit education system. KIPS Transactions on Computer and Communication Systems, 9(12), 333–338. https://doi.org/10.3745/KTCCS.2020.9.12.333
  • [10] Park, J. S. (1998). Electrical engineering education through the undergraduate system. The Korean Institute of Electrical Engineers, 47(2), 46-48.
  • [11] Prihantono, M. R., Usman, T., & Wakid, M. (2020). The development of learning media’s “tutorial video for setting the front wheel alignment with a 3D spooring tools” at SMK N 1 magelang. Journal of Physics: Conference Series, 1700, 012061. https://doi.org/10.1088/1742-6596/1700/1/012061
  • [12] Reyes‐Aviles, F., & Aviles‐Cruz, C. (2018). Handheld augmented reality system for resistive electric circuits understanding for undergraduate students. Computer Applications in Engineering Education, 26(3), 602-616. https://doi.org/10.1002/cae.21912
  • [13] ScopeAR. (2023). Worklink. https://www.scopear.com/
  • [14] Takrouri, K., Causton, E., & Simpson, B. (2022). AR technologies in engineering education: Applications, potential, and limitations. Digital, 2(2), 171-190. https://doi.org/10.3390/digital2020011
  • [15] Teamviewer. (2023). Ubimax. https://www.teamviewer.com/en/ubimax/
  • [16] Widoyoko, E. P. (2012). Teknik penyusunan instrumen penelitian. Yogyakarta: Pustaka Pelajar.
  • [17] Yusuf, Y. A. M., Ismail, I., Hamzah, W. M. A. F. W., Amin, M. A. M., & Arsad, M. A. M. (2023). A literature review on mobile augmented reality in education. In B. Alareeni & A. Hamdan (Eds.), Innovation of Businesses, and Digitalization during Covid-19 Pandemic (Vol. 488, pp. 875–888). Springer International Publishing. https://doi.org/10.1007/978-3-031-08090-6_56
  • [18] ZSpace. (2024). https://zspace.com/
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79a9c1da-6cf1-43e3-b0f7-28437b3fede0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.