Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper introduces an innovative hierarchical model with a leader to facilitate navigation of a swarm of underwater robots, inspired by the collective behaviours observed in natural animal groups, such as schools of fish and flocks of birds. In this model, the leader robot carries a comprehensive set of navigation information, while the other robots are stratified based on the relative distances between them and follow the leader during the navigation process. The model incorporates repulsion and attraction forces to enable clustering and collision avoidance among the robots. Initial simulation results confirm the scalability of the model and its robustness against noise, while further simulations demonstrate that the proposed layered strategy effectively manages polyline and circular trajectory navigation and guides the robotic group around obstacles while maintaining the group’s structural stability and efficiency. In addition, the decentralised nature of the model and its minimal communication requirements make it highly suitable for practical underwater tasks. This research not only provides an effective and deployable solution for the cooperative synchronisation of underwater robots but also offers valuable insights for understanding and designing other types of robotic swarm systems.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
71--80
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Marine Engineering College, Dalian Maritime University, Dalian, China
- College of Mechanical and Control Engineering, Baicheng Normal University, Baicheng, China
autor
- Marine Engineering College, Dalian Maritime University, Dalian, China
autor
- Marine Engineering College, Dalian Maritime University, Dalian, China
autor
- Marine Engineering College, Dalian Maritime University, Dalian, China
autor
- Marine Engineering College, Dalian Maritime University, Dalian, China
autor
- College of Mechanical Engineering, Jilin Communications Polytechnic, Changchun, China
autor
- College of Mechanical and Control Engineering, Baicheng Normal University, Baicheng, China
autor
- Marine Engineering College, Dalian Maritime University, Dalian, China
autor
- State Key Laboratory for Turbulence and Complex Systems, Intelligent Biomimetic Design Lab, College of Engineering, Peking University, Beijing, China
autor
- State Key Laboratory for Turbulence and Complex Systems, Intelligent Biomimetic Design Lab, College of Engineering, Peking University, Beijing, China
Bibliografia
- 1 Bogue R. Underwater robots: A review of technologies and applications. Industrial Robot: An International Journal 42(3), 186–191, 2015, https://doi.org/10.1108/IR-01-2015-0010.
- 2 Neira J, Sequeiros C, Huamani R, et al. Review on unmanned underwater robotics, structure designs, materials, sensors, actuators, and navigation control. Journal of Robotics 2021(1), 5542920, 2021, https://doi.org/10.1155/2021/5542920.
- 3 Hasan K, Ahmad S, Liaf A F, et al. Oceanic challenges to technological solutions: A review of autonomous underwater vehicle path technologies in biomimicry, control, navigation and sensing. IEEE Access, 2024, https://doi.org/10.1109/ACCESS.2024.3380458.
- 4 Luvisutto A, Al Shehhi A, Mankovskii N, et al. Robotic swarm for marine and submarine missions: Challenges and perspectives. In 2022 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV). IEEE, 2022, 1–8, https://doi.org/10.1109/AUV53081.2022.9965934.
- 5 Gao Z, Shi Q, Fukuda T, et al. An overview of biomimetic robots with animal behaviors. Neurocomputing 332, 339–350, 2019, https://doi.org/10.1016/j.neucom.2018.12.071.
- 6 Wang R, Du J, Xiong Z, et al. Hierarchical collaborative navigation method for UAV swarm. Journal of Aerospace Engineering 34(1), 04020097, 2021, https://doi.org/10.1061/(ASCE)AS.1943-5525.0001216.
- 7 Liu X, Yan C, Zhou H, et al. Towards flocking navigation and obstacle avoidance for multi-UAV systems through hierarchical weighting Vicsek model. Aerospace 8(10), 286, 2021, https://doi.org/10.3390/aerospace8100286.
- 8 Wang F, Chen Y. A novel hierarchical flocking control framework for connected and automated vehicles. IEEE Transactions on Intelligent Transportation Systems 22(8), 4801–4812, 2020, https://doi.org/10.1109/TITS.2020.2986436.
- 9 Rehman F U, Thomas G, Anderlini E. Centralized control system design for underwater transportation using two hovering autonomous underwater vehicles (HAUVs). IFACPapersOnLine 52(11), 13–18, 2019, https://doi.org/10.1016/j.ifacol.2019.09.111.
- 10 Zhao R, Miao M, Lu J, et al. Formation control of multiple underwater robots based on ADMM distributed model predictive control. Ocean Engineering 257, 111585, 2022, https://doi.org/10.1016/j.oceaneng.2022.111585.
- 11 Quattrini Li A, Carver C J, Shao Q, et al. Communication for underwater robots: Recent trends. Current Robotics Reports 4(2), 13–22, 2023, https://doi.org/10.1007/s43154-023-00100-4.
- 12 Antonelli G. Interconnected dynamic systems: An overview on distributed control. IEEE Control Systems Magazine 33(1), 76–88, 2013, https://doi.org/10.1109/MCS.2012.2225929.
- 13 Huy D Q, Sadjoli N, Azam A B, et al. Object perception in underwater environments: A survey on sensors and sensing methodologies. Ocean Engineering 267, 113202, 2023, https://doi.org/10.1016/j.oceaneng.2022.113202.
- 14 Vicsek T, Czirók A, Ben-Jacob E, et al. Novel type of phase transition in a system of self-driven particles. Physical Review Letters 75(6), 1226–1229, 1995, https://doi.org/10.1103/PhysRevLett.75.1226.
- 15 Jia Y, Vicsek T. Modelling hierarchical flocking. New Journal of Physics 21(9), 093048, 2019, https://doi.org/10.1088/1367-2630/ab428e.
- 16 Kim J. Leader-based flocking of multiple swarm robots in underwater environments. Sensors 23(11), 5305, 2023, https://doi.org/10.3390/s23115305.
- 17 Zhao Q, Luan Y, Li S, et al. The influences of self-introspection and credit evaluation on self-organized flocking. Applied Sciences 13(18), 10361, 2023, https://doi.org/10.3390/app131810361.
- 18 Jia Y, Wang L. Leader–follower flocking of multiple robotic fish. IEEE/ASME Transactions on Mechatronics 20(3), 1372–1383, 2015, https://doi.org/10.1109/TMECH.2014.2337375.
- 19 Shen J. Cucker–Smale flocking under hierarchical leadership. SIAM Journal on Applied Mathematics 68(3), 694–719, 2008, https://doi.org/10.1137/060673254.
- 20 Han W, Wang J, Wang Y, et al. Multi-UAV flocking control with a hierarchical collective behavior pattern inspired by sheep. IEEE Transactions on Aerospace and Electronic Systems, 2024, https://doi.org/10.1109/TAES.2024.3351961.
- 21 Cai W, Liu Z, Zhang M, et al. Cooperative artificial intelligence for underwater robotic swarm. Robotics and Autonomous Systems 164, 104410, 2023, https://doi.org/10.1016/j.robot.2023.104410.
- 22 Zhao Q, Li S, Wang G, et al. A local consistency algorithm to shorten the convergence time and improve the robustness of self-propelled swarms. In 2020 Chinese Automation Congress (CAC). IEEE, 2020, 4153–4157, https://doi.org/10.1109/CAC51589.2020.9327201.
- 23 Tiwari R, Jain P, Butail S, et al. Effect of leader placement on robotic swarm control. Proceedings of the 16th Conference on Autonomous Agents and Multiagent Systems, 2017, 1387–1394, https://dl.acm.org/citation.cfm?id=3091316&CFID=840116400&CFTOKEN=63016478.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79a64073-ae5b-4d9c-831b-d0eba1b0894e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.