PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Depolymerised Sodium Alginate as a Eco-Friendly Biostimulant for Improving Herb Yield and Nutrient Accumulation in Hyssop

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sodium alginate and its derivatives present a promising tool for improving the quality of crops. Hyssop is one of the most important herb used both in foods and traditional medicines. The aim of this study was to investigate the effect of depolymerised sodium alginate (DSA) on yield and mineral status of hyssop plants under greenhouse conditions. The outcomes demonstrated that foliar application of DSA with a molecular mass of 64,000 g•mol-1 at 50 and 100 mg•dm-3 significantly improved the leaf chlorophyll index (by 22.9 and 30.3%, respectively), above-ground plant both fresh (by 24.1% and 28.2%, respectively) and dry weights (by 30.1% and 32.8%, respectively) relative to the control. The DSA at 50 and 100 mg•dm-3 stimulated nitrogen, calcium, copper, manganese and zinc concentration in above-ground hyssop tissues by 18.9–31.1%, 32.9–77.2%, 44.7–43.2%, 69.3–41.8 and 40.6–33.3%, respectively. Moreover, application of DSA at 100 mg•dm-3 increased phosphorus and potassium concentration by 38.9% and 24.3%, respectively. The magnesium, boron and iron contents were unaffected by biostimulant treatment. The use of DSA has shown commercially potential to increase herb yield and some mineral nutrients in potted hyssop.
Rocznik
Strony
105--111
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • The Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, ul. Słowackiego 17, 71-434 Szczecin, Poland
Bibliografia
  • 1. Aftab T., Khan M.M.A., Naeem M., Idrees M., Siddiqi T.O., Varshney L. 2014. Effect of irradiated sodium alginate and phosphorus on biomass and artemisinin production in Artemisia annua. Carbohydr. Polym., 110, 396–404.
  • 2. Aftab T., Naeem M., Idrees M., Khan M.M.A., Varshney L. 2013. Cumulative role of irradiated sodium alginate and nitrogen fertilizer on growth, biochemical processes and artemisinin production in Artemisia annua. Ind. Crops Prod., 50, 874–881.
  • 3. Aghaei K., Pirbalouti A.G., Mousavi A., Badi H.N., Mehnatkesh A. 2019. Effects of foliar spraying of l-phenylalanine and ap-plication of bio-fertilizers on growth, yield, and essential oil of hyssop [Hyssopus officinalis L. subsp. angustifolius (Bieb.)]. Bi-ocatal. Agric. Biotechnol., 21, 101318.
  • 4. Ahmad B., Khan M.M.A., Jahan A., Shabbir A., Jaleel H. 2020. Increased production of valuable secondary products in plants by leaf applied radiation-processed polysaccharides. Int. J. Biol. Macromol., 164, 286–294.
  • 5. Ahmadi H., Babalar M., Sarcheshmeh M.A.A., Morshedloo M.R., Shokrpour M. 2020. Effects of exogenous application of citrulline on prolonged water stress damages in hyssop (Hyssopus officinalis L.): Antioxidant activity, biochemical indices, and essential oils profile. Food Chem., 333, 127433.
  • 6. Baj T., Korona-Głowniak I., Kowalski R., Malm A. 2018. Chemical composition and microbiological evaluation of essential oil from Hyssopus officinalis L. with white and pink flowers. Open Chem., 16, 317–323.
  • 7. Ceccanti C., Brizzi A., Landi M., Incrocci L., Pardossi A., Guidi, L. 2021. Evaluation of major minerals and trace elements in wild and domesticated edible herbs traditionally used in the Mediterranean area. Biol. Trace Elem. Res., 199, 3553–3561.
  • 8. Crozier A., Clifford M.N., Ashihara H. 2006. Plant secondary metabolites occurrence, structure and role in the human diet (Eds. Crozier A., Clifford M.N., Ashihara H.). Blackwell Publishing Ltd., John Wiley and Sons, 353.
  • 9. Fatemeh F., Sanaz H. 2011. A review on Hyssopus officinalis L.: Composition and biological activities. Afr. J. Pharm. Pharmacol., 5, 1959–1966.
  • 10. Gödecke T., Stein A., Qaim M. 2018. The global burden of chronic and hidden hunger: trends and determinants. Glob. Food Sec., 17, 21–29.
  • 11. Golubkina N., Logvinenko L., Novitsky M., Zamana S., Sokolov S., Molchanova A., Shevchuk O., Sekara A., Tallarita A., Caruso G. 2020. Yield, essential oil and quality performances of Artemisia dracunculus, Hyssopus officinalis and Lavandula angustifolia as affected by arbuscular mycorrhizal fungi under organic management. Plants, 9, 375.
  • 12. Gonçalves Júnior A.C., Nacke H., Coelho G.F., Schwantes D., de Carvalho E.A., de Moraes A.J. 2013. Nutrients and metals contents in hyssop (Hyssopus officinalis) plants growing in a clayish soil with mineral and organic. Científica (Jaboticabal), 41, 251–261.
  • 13. Grusak M.A. 2002. Enhancing mineral content in plant food products. J. Am. Coll. Nutr., 21, 178S–183S.
  • 14. Hedges L.J., Lister C.E. 2007. Nutritional attributes of herbs. Crop and Food Research Confidential Report. No. 1891, Horticulture, New Zealand, 1–89.
  • 15. Hossain M.A., Islam J.M., Hoque M.M., Nahar S., Khan M.A. 2021. Field demonstration of irradiated sodium alginate as tea production booster. Heliyon, 7, e05881
  • 16. Khajeh Hosseini S., Fanoodi F., Tabatabaee S.A., Yazdani Biouki R., Masoud Sinaki J. 2021. The effect of anti-transpiration and plant protective materials on vegetative and physiological traits of (Hyssopus officinalis L.) under drought stress. J. Plant Prod., 44, 77–88.
  • 17. Khan M.M.A., Faraz A., Sadiq Y., Khanam N., Ahmed K.B.M., Naeem M., Aftab T. 2022. Fractions of gamma-irradiated sodium alginate enhance the growth, enzymatic activities, and essential oil production of lemongrass [Cymbopogon flexuosus (Steud.) Wats]. In: Radiation-Processed Polysaccharides (pp. 257–272). Academic Press.
  • 18. Laurance W.F., Sayer J., Cassman K.G. 2014. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol., 29, 107–116.
  • 19. Lea E.J., Crawford D., Worsley A. 2006. Consumers’ readiness to eat a plant-based diet. Eur. J. Clin. Nutr., 60, 342–351.
  • 20. Li Y., Kong D., Fu Y., Sussman M.R., Wu H. 2020. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem., 148, 80–89.
  • 21. Liu R.H. 2013. Health-promoting components of fruits and vegetables in the diet. Adv. Nutr., 4, 384S–392S.
  • 22. Martínez-Ballesta M.C., Dominguez-Perles, R., Moreno D.A., Muries B., Alcaraz-López C., Bastías E., Carvajal M.J.A.F.S.D. 2010. Minerals in plant food: effect of agricultural practices and role in human health. A review. Agron. Sustain. Dev., 30, 295–309.
  • 23. Mukarram M., Khan M., Choudhary S., Zehra A., Naeem M., Aftab T. 2021. Natural Polysaccharides: novel plant growth regulators. In: Plant Growth Regulators (pp. 335–354). Springer, Cham.
  • 24. Patel R.P., Singh R., Rao B.R., Sing, R.R., Srivastava A., Lal R K. 2016. Differential response of genotype × environment on phenology, essential oil yield and quality of natural aroma chemicals of five Ocimum species. Ind. Crops Prod., 87, 210–217.
  • 25. Pirani H., Ebadi M.T., Rezaei A. 2020. Effect of seaweed fertilizer foliar application on growth parameters, yield, and essential oil content and composition of hyssop (Hyssopus officinalis L.). Iranian J. Med. Aromatic Plants Research, 36, 376–389.
  • 26. Praharaj S., Skalicky M., Maitra S., Bhadra P., Shankar T., Brestic M., … and Hossain A. 2021. Zinc biofortification in food crops could alleviate the zinc malnutrition in human health. Molecules, 26(12), 3509.
  • 27. Saebi A., Minaei S., Mahdavian A.R., Ebadi M.T. 2021. Precision harvesting of medicinal plants: elements and ash content of hyssop (Hyssopus officinalis L.) as affected by harvest height. Biol. Trace Elem. Res., 199, 753–762.
  • 28. Salachna P., Grzeszczuk M., Meller E., Mizielińska M. 2019. Effects of gellan oligosaccharide and NaCl stress on growth, photosynthetic pigments, mineral composition, antioxidant capacity and antimicrobial activity in red perilla. Molecules, 24, 3925.
  • 29. Salachna P., Grzeszczuk M., Meller E., Soból M. 2018. Oligo-Alginate with Low Molecular Mass Improves Growth and Physio-logical Activity of Eucomis autumnalis under Salinity Stress. Molecules, 23, 812.
  • 30. Salachna P., Pietrak A., Łopusiewicz Ł. 2021. Antioxidant potential of flower extracts from Centaurea spp. depends on their content of phenolics, flavonoids and free amino acids. Molecules, 26, 7465.
  • 31. Salachna P., Zawadzińska, A. 2017. Effect of daminozide and flurprimidol on growth, flowering and bulb yield of Eucomis autumnalis (Mill.) Chitt. Folia Hortic., 29, 33.
  • 32. Soetan K.O., Olayia C.O., Oyewole O.E. 2010. The importance of mineral elements for humans, domestic animals and plants-A review. Afr. J. Food Sci., 4, 200–222.
  • 33. Stancheva I., Geneva M., Hristozkova M., Zayova E. 2019. Comparison of bioactive compounds in Hyssopus officinalis plants collected from natural habitats with those propagated from seed and in vitro. J. Herbs Spices Med. Plants, 25, 104–113.
  • 34. Tahir M., Khushtar M., Fahad M., Rahman M.A. 2018. Phytochemistry and pharmacological profile of traditionally used medicinal plant Hyssop (Hyssopus officinalis L.). J. Appl. Pharm. Sci., 8, 132–140.
  • 35. UNICEF 2021. The state of food security and nutrition in the world 2021.
  • 36. Vlase L., Benedec D., Hanganu D., Damian G., Csillag I., Sevastre B., Mot A.C., Silaghi-Dumitrescu R., Tilea I. 2014. Evaluation of Antioxidant and Antimicrobial Activities and Phenolic Profile for Hyssopus officinalis, Ocimum basilicum and Teucrium chamaedrys. Molecules, 19, 5490–5507.
  • 37. Welch R. 2002. The impact of mineral nutrients in food crops on global human health. Plant Soil, 247, 3–90.
  • 38. White P.J., Broadley M.R. 2009. Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol., 182, 49–84.
  • 39. Zawadzińska A., Salachna P., Nowak J.S., Kowalczyk, W. 2021. Response of interspecific geraniums to waste wood fiber substrates and additional fertilization. Agriculture, 11, 119.
  • 40. Zawiślak G. 2016. Essential oil composition of Hyssopus officinalis L. grown in Poland. J. Essent. Oil-Bear. Plants, 19, 699–705.
  • 41. Zhang C., Wang W., Zhao X., Wang H., Yin H. 2020. Preparation of alginate oligosaccharides and their biological activities in plants: A review. Carbohydr. Res., 494, 108056.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79a63a5a-b871-456f-9718-280347aa91ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.