PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Experimental and numerical analysis of blood flow in roughness impact-R test

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper covers simulation of blood flow in a roughness impact-R test model to anticipate the hemodynamic conditions of adhesion of blood elements to the modified surface. It was performed using numerical modelling of this process. The aim of these simulations was to create a surface morphology that stimulates the adhesion of blood elements to the surface of base plate of impact-R test. Methods: The morphology of base plate of impact-R test was developed using a vacuum powder sintering of commercial purity titanium powder (CP-Ti) on Ti6Al7Nb substrate. The finite volume method (FVM) and disperse particle method (DPM) were applied to develop the target model of a roughness impact-R test. The morphology of modified surfaces was documented with digital microscope and SEM (scanning electron microscopy). Results: The impact-R test developed using the two-phase blood model performed on regularly structured base plate resulted in shear stress values higher than the analogous for the model lacking such modification. The most significant reduction in maximum values of shear stress occurred in case of the DPM model and especially in the model with regular structures. Conclusions: The proposed models are very effective in modeling of the analysis of blood flow in roughness impact-R test.
Rocznik
Strony
120--133
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
  • AGH University Science and Technology, Kraków, Poland.
  • Polish Academy of Sciences, Institute of Metallurgy and Materials Science, Kraków, Poland.
  • Polish Academy of Sciences, Institute of Metallurgy and Materials Science, Kraków, Poland.
autor
  • Polish Academy of Sciences, Institute of Metallurgy and Materials Science, Kraków, Poland.
Bibliografia
  • [1] ADAMCZUK K., WOLAŃSKI W., KASPERA W., Analysis of blood flow in the cerebral arteries, Curr. Probl. Biomech., 2016, 11, 9–14 (in Polish).
  • [2] ALIMOHAMADI H., SMITH A., NOWAK R., FOWLER V., RANGAMANI P., Non-uniform distribution of myosin-mediated forces governs red blood cell membrane curvature through tension modulation, PloS. Comput. Biol., 2020, 16, 1–26.
  • [3] BARBA A., DIEZ-ESCUDERO A., MAAZOUZ Y., RAPPE K., ESPANOL M., MONTUFAR E.B., BONANY M., SADOWSKA J.M., GUILLEM-MARTI J., ÖHMAN-MÄGI C., PERSSON C., MANZANARES M.C., FRANCH J., GINEBRA M.P., Osteoinduction by Foamed and 3D-Printed Calcium Phosphate Scaffolds: Effect of Nanostructure and Pore Architecture, ACS Appl. Mater. Interfaces, 2017, 9, 41722–41736.
  • [4] BASIAGA M., PASZENDA Z., LISOŃ J., TARATUTA A., KAZEKKĘSIK A., KROK-BORKOWICZ M., NUCKOWSKI P., SZINDLER M., STASZUK M., MAJOR Ł., MAJOR R., ČECH BARABASZOVÁ K., DYNER M., Microstructure and antibacterial properties of a ZnO coating on a biomaterial surface, Arch. Civ. Mech. Eng., 2022, 22, DOI: 10.1007/s43452-022-00414-8.
  • [5] BERIS A.N., HORNER J.S., JARIWALA S., ARMSTRONG M.J., WAGNER N.J., Recent advances in blood rheology: A review, Soft Matter., 2021, 17, 10591–10613.
  • [6] BLAKE A.S.T., PETLEY G.W., DEAKIN C.D., Effects of changes in packed cell volume on the specific heat capacity of blood: implications for studies measuring heat exchange in extracorporeal circuits, Br. J. Anaesth., 2000, 84, 28–32.
  • [7] BOWEN R.M., Incompressible porous media models by use of the theory of mixtures, Int. J. Eng. Sci., 1980, 18, 1129–1148.
  • [8] BUSCHMANN M.H., DIETERICH P., ADAMS N.A., SCHNITTLER H.-J., Analysis of flow in a cone-and-plate apparatus with respect to spatial and temporal effects on endothelial cells, Biotechnol. Bioeng., 2005, 89, 493–502.
  • [9] CAI Q., LIAO W., XUE F., WANG X., ZHOU W., LI Y., ZENG W., Selection of different endothelialization modes and different seed cells for tissue-engineered vascular graft, Bioact. Mater., 2021, 6, 2557–2568.
  • [10] CANULLO L., GENOVA T., GROSS TRUJILLO E., PRADIES G., PETRILLO S., MUZZI M., CAROSSA S., MUSSANO F., Fibroblast Interaction with Different Abutment Surfaces: In Vitro Study, Int. J. Mol. Sci., 2020, 21, DOI: 10.3390/ijms21061919.
  • [11] CONNES P., ALEXY T., DETTERICH J., ROMANA M., HARDY-DESSOURCES M.-D., BALLAS S.K., The role of blood rheology in sickle cell disease, Blood Rev., 2016, 30, 111–118.
  • [12] DERAKHTI S., HAMID SAFIABADI-TALI S., AMOABEDINY G., SHEIKHPOUR M., Attachment and detachment strategies in microcarrier-based cell culture technology: A comprehensive review, Mat. Sci. Eng. C, 2019, 103, DOI: 10.1016/j.msec.2019.109782.
  • [13] EL-ARAGI G.M., Effect of electrohydraulic discharge on viscosity of human blood, Phys. Res. Int., 2013, DOI: 10.1155/2013/203708.
  • [14] ERDEMIR A., GUESS T.M., HALLORAN J., TADEPALLI S.C., MORRISON T.M., Considerations for reporting finite element analysis studies in biomechanics, J. Biomech., 2012, 45, 625–633.
  • [15] FRASER K.H., ZHANG T., TASKIN M.E., GRIFFITH B.P., WU Z.J., A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index, J. Biomech. Eng., 2012, 134, DOI: 10.1115/1.4007092.
  • [16] GEMMEL C.H., Activation of platelets by in vitro whole blood contact with materials: increases in microparticle procoagu lant activity, and soluble P-selectin blood levels, J. Biomater. Sci. Polym. Ed., 2001, 12, 933–943.
  • [17] GHEISARIFAR M., THOMPSON G.A., DRAGO C., TABATABAEI F., RASOULIANBOROUJENI M., In vitro study of surface alterations to polyetheretherketone and titanium and their effect upon human gingival fibroblasts, J. Prosthet. Dent., 2021, 125, 155–164.
  • [18] HARRISON P., Progress in the assessment of platelet function, Br. J. Hematol., 2000, 111,733–744.
  • [19] HEINRICH M., SCHWARZE R., 3D-coupling of Volume-of-Fluid and Lagrangian particle tracking for spray atomization simulation in OpenFOAM, Software X, 2020, 11, DOI: 10.1016/j.softx.2020.100483.
  • [20] HIMBERT S., ALSOP R., ROSE M., The Molecular Structure of Human Red Blood Cell Membranes from Highly Oriented, Solid Supported Multi-Lamellar Membranes, Sci. Rep., 2017, 7, DOI: 10.1038/srep39661.
  • [21] JAMES M.E., PAPAVASSILIOU D.V., O’REAR E.A., Use of computational fluid dynamics to analyze blood flow, hemolysis and sublethal damage to red blood cells in a bileaflet artificial heart valve, Fluids, 2019, 4, DOI: 10.3390/fluids4010019.
  • [22] KARAKI W., RAHUL F.N.U., LOPEZ C.A., BORCA-TASCIUC D.A., DE S., A continuum thermomechanical model of in vivo electrosurgical heating of hydrated soft biological tissues, Int. J. Heat Mass Transf., 2018, 127, 961–974.
  • [23] KHANJANPOUR M.H., JAVADI A.A., Experimental and CFD analysis of impact of surface roughness on hydrodynamic performance of a darrieus hydro (DH) turbine, Energies, 2020, 13, DOI: 10.3390/en13040928.
  • [24] KIM J., ANTAKI J.F., MASSOUDI M., Computational study of blood flow in microchannels, J. Comput. Appl. Math., 2016, 292, 174–187.
  • [25] KOPERNIK M., TOKARCZYK P., Development of multi-phase models of blood flow for medium-sized vessels with stenosis, Acta Bioeng. Biomech., 2019, 21, 63–70.
  • [26] KOPERNIK M., DYRDA K., KURTYKA P., MAJOR R., Discrete phase model of blood flow in a roughness microchannel simulating the formation of pseudointima, Acta Bioeng. Biomech., 2022, 24, 131–144.
  • [27] MAHDAVIMANESH M., NOGHREHABADI A.R., BEHBAHANINEJAD M., AHMADI G., DEHGHANIAN M., Lagrangian Particle Tracking: Model Development, Life Sci. J., 2013, 10, 34–41.
  • [28] MENCONI M.J., POCKWINSE S., OWEN T.A., DASSE K.A., STEIN G.S., LIAN J.B., Properties of blood-contacting surfaces of clinically implanted cardiac assist devices: gene expression, matrix composition, and ultrastructural characterization of cellular linings, J. Cell. Biochem., 1995, 57, 557–573.
  • [29] NADER E., SKINNER S., ROMANA M., FORT R., LEMONNE N., GUILLOT N., GAUTHIER A., ANTOINE-JONVILLE S., RENOUX C., HARDY-DESSOURCES M.-D., STAUFFER E., JOLY P., BERTRAND Y., CONNES P., Blood Rheology: Key Parameters, Impact on Blood Flow, Role in Sickle Cell Disease and Effects of Exercise, Front. Physiol., 2019, 10, 1329, DOI: 10.3389/fphys.2019.01329.
  • [30] PEDERSEN L., NIELSEN E.B., CHRISTENSEN M.K., BUCHWALD M., NYBO M., Measurement of plasma viscosity by free oscillation rheometry: imprecision, sample stability and establishment of a new reference range, Ann. Clin. Biochem., 2014, 51, 495–498.
  • [31] PONDER E., The specific heat and the heat of compression of human red cells, sickled red cells, and paracrystalline rat red cells, J. Gen. Physiol., 1995, 38, 575–580.
  • [32] RAFFI S., OZ M.C., SELDOMRIDGE J.A., FERRIS B., ASCH A.S., NACHMEN R.L., SHAPIRO F., ROSE E.A., LEVIN H.R., Characterisation of hematopoetic cells arising on the textured surface on left ventricular assist devices, Ann. Thorac. Surg., 1995, 60, 1627–1632.
  • [33] ROSENTRATER K.A., FLORES R.A., Physical and rheological properties of slaughterhouse swine blood and blood components, T. ASAE., 1997, 40, 683–689.
  • [34] SANAK M., JAKIEŁA B., WĘGRZYN W., Assessment of hemocompatibility of materials with arterial blood flow by platelet functional tests, Bull. Pol. Acad. Sci. Tech., 2010, 58, 317–322.
  • [35] SCHAUB R.D., KAMENEVA M.V., BOROVETZ H.S., WAGNER W.R., Assessing acute platelet adhesion on opaque metallic and polymeric biomaterials with fiber optic microscopy, J. Biomed. Mater. Res., 2000, 49, 460–468.
  • [36] SHENKMAN B., SAVION N., DARDIK R., TAMARIN I., VARON D., Testing of Platelet Deposition on Polystyrene Surface Under Flow Conditions by the Cone and Plate(let) Analyzer: Role of Platelet Activation, Fibrinogen and von Willebrand Factor, Thromb. Res., 2000, 99, 353–361.
  • [37] SHEWAFERAW S.S., COLLINS W.E., The Rheology of Blood Flow in a Branched Arterial System, Appl. Rheol., 2005, 15, 398–405.
  • [38] SPANIER T., OZ M., LEVIN H., WEINBERG A., STAMATIS K., STERN D., ROSE E., SCHMIDT A.M., Activation of coagulation and fibrinolytic pathways in patients with left ventricular assist devices, J. Thorac. Cardiovasc. Surg., 1996, 112, 1090–1097.
  • [30] SPRUELL C., BAKER A.B., Analysis of a high-throughput cone-and-plate apparatus for the application of defined spatiotemporal flow to cultured cells, Biotechnol. Bioeng., 2013, 110, 1782–1793.
  • [40] SUCOSKY P., PADALA M., ELHAMMALI A., BALACHANDRAN K., JO H., YOGANATHAN A.P., Design of an ex vivo culture system to investigate the effects of shear stress on cardiovascular tissue, J. Biomech. Eng., 2008, 130, DOI: 10.1115/ 1.2907753.
  • [41] TANIGUCHI N., FUJIBAYASHI S., TAKEMOTO M., SASAKI K., OTSUKI B., NAKAMURA T., MATSUSHITA T., KOKUBO T., MATSUDA S., Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment, Mater. Sci. Eng. C Mater. Biol. Appl., 2016, 59, 690–701.
  • [42] THYAGARAJAN B., KUMAR M.P., SIKACHI R.R., AGRAWAL A., Endocarditis in left ventricular assist device, Intractable Rare Dis. Res., 2016, 5, 177–184.
  • [43] TOMASZEWSKI M., SYBILSKI K., MAŁACHOWSKI J., WOLAŃSKI W., BUSZMAN P.P., Numerical and experimental analysis of balloon angioplasty impact on flow hemodynamics improvement, Acta Bioeng. Biomech., 2020, 22, 169–183.
  • [44] TREMBECKA-WOJCIGA K., KOPERNIK M., SURMIAK M., MAJOR R., GAWLIKOWSKI M., BRUCKERT F., KOT M., LACKNER J.M., Effect of the mechanical properties of carbon-based coatings on the mechanics of cell-material interactions, Colloids Surf. B, 2021, 197, DOI: 10.1016/j.colsurfb.2020.111359.
  • [45] TYFA Z., JÓŹWIK P., OBIDOWSKI D., REOROWICZ P., JODKO D., KAPKA K., MAKOSIEJ R., CZKWIANIANC E., JÓŹWIK K., Inhaled drug airflow patterns and particles deposition in the paediatric respiratory tract, Acta Bioeng. Biomech., 2020, 22, 101–110.
  • [46] VAIDYA N., BARAGONA M., LAVEZZO V., MAESSEN R., VEROY K., Simulation study of the cooling effect of blood vessels and blood coagulation in hepatic radiofrequency ablation, Int. J. Hyperther., 2021, 38, 95–104.
  • [47] VASAN S.S., GHOSH R., CUI Z., Design of cone-and-plate test cell for ultrafiltration, Desalination, 2002, 146, 219–224.
  • [48] YE C., ALI S., SUN Q., GUO M., LIU Y., GAO Y., HUO B., Novel cone-and-plate flow chamber with controlled distribution of wall fluid shear stress, Comput. Biol. Med., 2019, 106, 140–148.
  • [49] YU Z., TAN J., WANG S., Enhanced discrete phase model for multiphase flow simulation of blood flow with high shear stress, Sci. Prog., 2021, 104, DOI: 10.1177/00368504211008064.
  • [50] ZILLA P., DEUTSCH M., BEZUIDENHOUT D., DAVIES N.H., PENNEL T., Progressive Reinvention or Destination Lost? Half a Century of Cardiovascular Tissue Engineering, Front. Cardiovasc. Med., 2020, 7, DOI: 10.3389/fcvm.2020.00159.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79a104a6-bd24-486f-acb7-82d9c79484b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.