PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Complex-valued distribution entropy and its application for seizure detection

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Embedding entropies are powerful indicators in quantifying the complexity of signal, but most of them are only applicable for real-valued signal and the phase information is ignored if the analyzed signal is complex-valued. To assess the complexity of complex-valued signal, a new entropy called complex-valued distribution entropy (CVDistEn) was first proposed in this study. Two rules, namely equal width criterion and equal area criterion, were employed to demarcate the complex-valued space and two kinds of CVDistEn, i.e., CVDistEn1 and CVDistEn2 were raised. Furthermore, two novel feature extraction methods: (1) flexible analytic wavelet transform (FAWT)-based CVDistEn1 and logarithmic energy (LE) (FAWTC1L), (2) FAWT-based CVDistEn2 and LE (FAWTC2L) were subsequently put forward to characterize the interictal and ictal EEGs. Fuzzy k-nearest neighbors (FKNN) classifier was finally employed to classify these two types of EEGs automatically. Experiment results show the fusion method of FAWTC1L and FKNN leads to the best accuracies (ACCs)/Matthews correlation coefficients (MCCs) of 99.99%/99.97% and 100%/100% for Bonn and Neurology & Sleep Centre EEG datasets, respectively, while the other fusion scheme of FAWTC2L and FKNN results in the highest ACCs/MCCs of 99.97%/99.93% and 99.94%/99.89% for the same datasets. The proposed methods outperform other entropy-related seizure detection schemes and most of state-of-the-art techniques, they provide another new way for automated seizure detection in EEG.
Twórcy
autor
  • College of Communication Engineering, Jilin University, Changchun, China
  • College of Communication Engineering, Jilin University, No. 5988, Renmin Street, Changchun, Jilin Province, China
autor
  • College of Communication Engineering, Jilin University, Changchun, China
Bibliografia
  • [1] Zhang T, Chen W, Li M. Fuzzy distribution entropy and its application in automated seizure detection technique. Biomed Signal Process Control 2018;39:360–77.
  • [2] Pati S, Alexopoulos AV. Pharmacoresistant epilepsy: from pathogenesis to current and emerging therapies. Clev Clin J Med 2010;77(7):457–67.
  • [3] Zhang T, Chen W. LMD based features for the automatic seizure detection of EEG signals using SVM. IEEE Trans Neural Syst Rehabil Eng 2018;25(8):1100–8.
  • [4] Acharya UR, Fujita H, Sudarshan VK, Bhat S, Koh JEW. Application of entropies for automated diagnosis of epilepsy using EEG signals: a review. Knowledge Based Syst 2015;88:85–96.
  • [5] Srinivasan V, Eswaran C, Sriraam N. Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans Inf Technol Biomed 2007;11(3):288–95.
  • [6] Kumar Y, Dewal ML, Anand RS. Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. Signal Image Video Process 2014;8(7):1323–34.
  • [7] Acharya UR, Molinari F, Sree SV, Chattopadhyay S, Ng K, Surigh JS. Automated diagnosis of epileptic EEG using entropies biomed. Signal Process 2012;7(4):401–8.
  • [8] Song Y, Crowcroft J, Zhang J. Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine. J Neurosci Methods 2012;210 (2):132–46.
  • [9] Li P, Karmakar C, Yearwood J, Venkatesh S, Palaniswami M, Liu C. Detection of epileptic seizure based on entropy analysis of short-term EEG. PLoS One 2018;13(3):e0193691.
  • [10] Xiang J, Li C, Li H, Cao R, Wang B, Han X, et al. The detection of epileptic seizure signals based on fuzzy entropy. J Neurosci Methods 2015;243:18–25.
  • [11] Kumar Y, Dewal ML, Anand RS. Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine. Neurocomputing 2014;133(8):271–9.
  • [12] Peker M, Sen B, Delen D. A novel method for automated diagnosis of epilepsy using complex-valued classifiers. IEEE J Biomed Health Inform 2016;20(1):108–18.
  • [13] Farahmand S, Sobayo T, Mogul DJ. Noise-assisted multivariate EMD-based mean-phase coherence analysis to evaluate phase-synchrony dynamics in epilepsy patients. IEEE Trans Neural Syst Rehabil Eng 2018;26(12):2270–9.
  • [14] Wang L, Long X, Aarts RM, Dijk JP, Arends JB. A broadband method of quantifying phase synchronization for discriminating seizure EEG signals. Biomed Signal Process Control 2019;52:371–83.
  • [15] Chen HL, Yang B, Wang G, Liu J, Xu X, Wang SJ, Liu DY. A novel bankruptcy prediction model based on an adaptive fuzzy-nearest neighbor method. Knowledge Based Syst 2011;24(8):1348–59.
  • [16] Cheng MY, Hoang ND. Groutability estimation of grouting processes with microfine cements using an evolutionary instance-based learning approach. J Comput Civil Eng 2014;28(4):04014014.
  • [17] Cheng MY, Hoang ND. A swarm-optimized fuzzy instance-based learning approach for predicting slope collapses in mountain roads. Knowledge Based Syst 2015;76:256–63.
  • [18] Derrac J, Chiclana F, García S, Herrera F. Evolutionary fuzzy k-nearest neighbors algorithm using interval-valued fuzzy sets. Inform Sci 2016;329:144–63.
  • [19] Kassani PH, Teoh ABJ, Kim E. Evolutionary-modified fuzzy nearest-neighbor rule for pattern classification. Expert Syst Appl 2017;88:258–69.
  • [20] Gopika GK, Sinha N, Dinesh BJ. Statistical features based epileptic seizure EEG detection-an efficacy evaluation. 2015 International Conference on Advances in Computing Communications and Informatics (ICACCI) 2015.
  • [21] Gandhi T, Panigrahi BK, Bhatia M, Anand S. Expert model for detection of epileptic activity in EEG signature. Expert Syst Appl 2010;37(4):3513–20.
  • [22] Li P, Liu C, Li K, Zheng D, Liu C, Hou Y. Assessing the complexity of short-term heartbeat interval series by distribution entropy. Med Biol Eng Comput 2015;53(1):77–87.
  • [23] Bayram Ilker. An analytic wavelet transform with a flexible time-frequency covering. IEEE Trans Signal Process 2013;61 (5):1131–42.
  • [24] Keller JM, Gray MR, Givens JA. A fuzzy k-nearest neighbor algorithm. IEEE Trans Syst Man Cybern 1985;4:580–5.
  • [25] Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory 1967;13(1):21–7.
  • [26] Jia J, Goparaju B, Song JL, Zhang R, Westover MB. Automated identification of epileptic seizures in EEG signals based on phase space representation and statistical features in the CEEMD domain. Biomed Signal Process 2017;38:148–57.
  • [27] Pachori RB, Patidar S. Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Comput Methods Programs Biomed 2014;113 (2):494–502.
  • [28] Joshi V, Pachori RB, Vijesh A. Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomed Signal Process Control 2014;9(1):1–5.
  • [29] Chen G. Automatic EEG seizure detection using dual-tree complex Wavelet-Fourier features. Expert Syst Appl 2014;41 (5):2391–4.
  • [30] Kaya Y, Uyar M, Tekin R, Yldrm S. 1D-local binary pattern based feature extraction for classification of epileptic EEG signals. Appl Math Comput 2014;243:209–19.
  • [31] Kumar TS, Kanhangad V, Pachori RB. Classification of seizure and seizure-free EEG signals using local binary patterns. Biomed Signal Process 2015;15:33–40.
  • [32] Swami P, Gandhi TK, Panigrahi BK, Tripathi M, Anand S. A novel robust diagnostic model to detect seizures in electroencephalography. Expert Syst Appl 2016;56:116–30.
  • [33] Patidar S, Panigrahi T. Detection of epileptic seizure using Kraskov entropy applied on tunable-Q wavelet transform of EEG signals. Biomed Signal Process Control 2017;34:74–80.
  • [34] Sharma M, Pachori RB, Acharya UR. A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension. Pattern Recognit Lett 2017;94:172–9.
  • [35] Mursalin M, Zhang Y, Chen Y, Chawla NV. Automated epileptic seizure detection using improved correlation- based feature selection with random forest classifier. Neurocomputing 2017;241:204–14.
  • [36] Jaiswal AK, Banka H. Epileptic seizure detection in EEG signal with GModPCA and support vector machine. Biomed Mater Eng 2017;28:141–57.
  • [37] Bhati D, Sharma M, Pachori RB, Gadre VM. Time-frequency localized three-band biorthogonal wavelet filter bank using semidefinite relaxation and nonlinear least squares with epileptic seizure EEG signal classification. Digit Signal Process 2017;62:259–73.
  • [38] Tiwari A, Pachori RB, Kanhangad V, Panigrahi B. Automated diagnosis of epilepsy using key-point based local binary pattern of EEG signals. IEEE J Biomed Health Inform 2017;21 (4):888–96.
  • [39] Jaiswal AK, Banka H. Local transformed features for epileptic seizure detection in EEG signal. J Med Biol Eng 2018;38(2):222–35.
  • [40] Zhang T, Chen W, Li M. Generalized Stockwell transform and SVD-based epileptic seizure detection in EEG using random forest. Biocybern Biomed Eng 2018;38(3):519–34.
  • [41] Li Y, Wang X, Luo M, Li K, Yang X, Guo Q. Epileptic seizure classification of EEGs using time-frequency analysis based multiscale radial basis functions. IEEE J Biomed Health Inform 2018;22(2):386–97.
  • [42] Jaiswal AK, Banka H. Epileptic seizure detection in EEG signal using machine learning techniques. Australas Phys Eng Sci Med 2018;41(1):81–94.
  • [43] Zhang T, Chen W, Li M. Classification of inter-ictal and ictal EEGs using multi-basis MODWPT, dimensionality reduction algorithms and LS-SVM: A comparative study. Biomed Signal Process Control 2019;47:240–51.
  • [44] Mamli S, Kalbkhani H. Gray-level co-occurrence matrix of Fourier synchro-squeezed transform for epileptic seizure detection. Biocybern Biomed Eng 2018;39(1):87–99.
  • [45] Atal DK, Singh M. A hybrid feature extraction and machine learning approaches for epileptic seizure detection. Multidimension Syst Signal Process 2019. http://dx.doi.org/10.1007/s11045-019-00673-4 (in press).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-799e8d14-24c7-4b89-8469-210c2ffbb964
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.