Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Ensuring universal and stable underwater communication in shallow waters for various environmental conditions is a difficult scientific and engineering task. This applies in particular to underwater communication systems that use acoustic waves in very shallow underwater channels, where multipath propagation permanently occurs. The article provides assumptions for a system working with incoherent M-ary Frequency-Shift Keying (MFSK) modulation, along with guidelines for eliminating the impact of the multipath phenomenon. The results of experimental tests carried out in a lake for two seasons and, therefore, different sound velocity profiles are presented. For comparison purposes, three transducers placed at different depths, including at the bottom of the reservoir, were used to receive the transmitted signals.
Rocznik
Tom
Strony
861--869
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
- Gdańsk University of Technology
autor
- Gdańsk University of Technology
autor
- Gdansk University of Technology
autor
- Gdynia Maritime University
autor
- Polish Naval Academy
Bibliografia
- [1] X. Lurton, “An Introduction to Underwater Acoustics: Principles and Applications,” Springer, 2010.
- [2] J. Hui, X. Sheng, “Underwater Acoustic Channel,” Springer, 2023.
- [3] Z. Klusek, A.Lisimenka, “Seasonal and diel variability of the underwater noise in the Baltic Sea,” The Journal of the Acoustical Society of America, 139, pp. 1537-1547, 2016. https://doi.org/10.1121/1.4944875.
- [4] B. Katsnelson, V. Petnikov, J. Lynch, “Fundamentals of Shallow Water Acoustics,” Springer, 2012.
- [5] H. S. Dol, P. Casari, T. van der Zwan, R. Otnes, “Software-Defined Underwater Acoustic Modems: Historical Review and the NILUS Approach, ” IEEE Journal of Oceanic Engineering, vol. 42, pp. 722-737, 2017. https://doi.org/10.1109/JOE.2016.2598412.
- [6] J.H. Schmidt, A.M. Schmidt, “Underwater Acoustic Communication System Using Broadband Signal with Hyperbolically Modulated Frequency,” Vibrations in Physical Systems, 32(1):2021116, 2021. https://doi.org/10.21008/j.0860-6897.2021.1.16
- [7] J. Schmidt, I. Kochańska, A. Schmidt, “Performance of the Direct Sequence Spread Spectrum Underwater Acoustic Communication System with Differential Detection in Strong Multipath Propagation Conditions,” Archives of Acoustics, 49, 2024. https://doi.org/10.24425/aoa.2024.-148771.
- [8] J.H. Schmidt, “Using Fast Frequency Hopping Technique to Improve Reliability of Underwater Communication System,” Applied Sciences, 10, no. 3: 1172, 2020. https://doi.org/10.3390/app10031172.
- [9] I. Kochańska, J.H. Schmidt, J. Marszal, “Shallow Water Experiment of OFDM Underwater Acoustic Communications,” Archives of Acoustics, 45(1), pp. 11-18, 2020. https://doi.org/10.24425/aoa.2019.129737.
- [10] S. Zhou, Z Wang, “OFDM for Underwater Acoustic Communications,” John Wiley & Sons Ltd.: Chichester, UK, 2014.
- [11] J. H. Schmidt, A. M. Schmidt and I. Kochańska, “Multiple-Input Multiple-Output Technique for Underwater Acoustic Communication System,” 2018 Joint Conference - Acoustics, Ustka, Poland, pp. 1-4, 2018. https://doi.org/10.1109/ACOUSTICS.2018.8502439.
- [12] J. H. Schmidt, A. M. Schmidt, “Wake-Up Receiver for Underwater Acoustic Communication Using in Shallow Water,” Sensors, no. 4: 2088, 2023. https://doi.org/10.3390/s23042088.
- [13] J.G. Proakis, “Digital Communication,” McGrawHill, NY, USA, 2000.
- [14] A.F. Molisch, “Wireless Communications,” Wiley-IEEE Press: Amsterdam, The Netherlands, 2010.
- [15] D. Bayley, J. D. Ralphs, “Piccolo 32-tone telegraph system in diplomatic communication,” Proc IEE, vol. 119, no. 9, pp. 1229-1236, 1972.
- [16] M. Baldi, F. Chiaraluce, N. Maturo, G. Ricciutelli, R. Abelló, J. DeVicente, M. Mercolino, A. Ardito, F. Barbaglio, S. Finocchiaro, “Coding for space telemetry and telecommand transmissions in presence of solar scintillation,” in Proc. Int. Workshop Tracking, Telemetry Command Syst. Space Appl. (TTC), pp. 1-8, Sep. 2016.
- [17] M. Baldi, F. Chiaraluce, N. Maturo, G. Ricciutelli, A. Ardito, F. Barbaglio, “Coded transmissions for space links affected by solar scintillation: Baseband analysis,” Int. J. Satell. Commun. Netw, vol. 37, no. 6, pp. 571-587, 2019. https://doi.org/10.1002/sat.1299.
- [18] E. Satorius, P. Estabrook, J. Wilson, D. Fort, “Direct-to-Earth communications and signal processing for Mars exploration Rover entry, descent, and landing,” Interplanetary Netw. Prog. Rep., pp. 42-153, May 2003. [Online]. Available: https://ipnpr.jpl.nasa.gov/
- [19] ECOMTEC (Executive Summary Report), document ESA Study. ESA Contract Number 4000113507/15/Nl/FE, TAS-I, Callisto and ZELINDA, ECOMTEC Study, Nov. 2017.
- [20] I. Kochanska, Jan H. Schmidt, Aleksander M. Schmidt, “Study of probe signal bandwidth influence on estimation of coherence bandwidth for underwater acoustic communication channel,” Applied Acoustics, Volume 183, 2021. https://doi.org/10.1016/j.apacoust.2021.108331.
- [21] I. Kochańska, J. Schmidt, “Estimation of Coherence Bandwidth for Underwater Acoustic Communication Channel,” 2018 Joint Conference - Acoustics, 1-9, 2018. https://doi.org/10.1109/acoustics.2018.8502331.
- [22] R. Studański, A. Żak, “Results of impulse response measurements in real conditions,” Journal of Marine Engineering & Technology, Volume 16, pp. 337-343, 2017. https://doi.org/10.1080/20464177.2017.1378151.
- [23] A. Czapiewska, A. Luksza, R. Studanski, A. Żak, “Reduction of the Multipath Propagation Effect in a Hydroacoustic Channel Using Filtration in Cepstrum,” Sensors, 20, 751, 2020. https://doi.org/10.3390/s20030751.
- [24] K. Zachariasz, J. Schmidt, R. Salamon, “Code signals transmission using MFSK modulation in shallow waters,” Hydroacoustics, Vol.4, pp. 261-264, 2001.
- [25] J. Schmidt, K. Zachariasz, R. Salamon, “Underwater communication system for shallow water using modified MFSK modulation,” Hydroacoustics, Vol. 8, pp. 179-184, 2005.
- [26] A. B. Wood, D. E. Weston, “The propagation of sound in mud,” Acta Acustica united with Acustica, pp. 156-162, 1964.
- [27] R.D. Stoll, G.M. Bryan, “Wave Attenuation in Saturated Sediments,” Journal of the Acoustical Society of America, Vol. 47, pp. 1440-1447, 1970. https://doi.org/10.1121/1.1912054.
- [28] R.D. Stoll, “Theoretical aspects of sound transmission in sediments,” Journal of the Acoustical Society of America, Vol. 68(5), pp. 1341-1350, 1980. https://doi.org/10.1121/1.385101.
- [29] R.D. Stoll, “Marine sediment acoustics,” Journal. of the Acous. Society of America, Vol. 77(5): 1789-1799, 1985. https://doi.org/10.1121/1.391928.
- [30] M.S. Ballard, K.M. Lee, “The acoustics of marine sediments,” Acoustics Today, Vol. 13(3), pp. 11-18, 2017.
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
2. This work was supported by the National Centre for Research and Development under Project DOB-SZAFIR/01/B/017/04/2021.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-799aef81-6c8b-4e39-b933-dee021888996
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.