PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental analysis of the freestream length scale and turbulence intensity impact on bypass transition in boundary layer on a flat plate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An experimental investigation of the turbulent flow over a flat plate in a subsonic wind tunnel was carried out. The enhanced level of turbulence was generated by five wicker grids with square meshes, and different parameters (diameter of the grid rod 0.3–3 mm and the grid mesh size 1–30 mm). The velocity of the flow was measured by means of a 1D hot-wire probe, suitable for measurements in a boundary layer. The aim of the investigation was to explore the turbulence length scale in the flow behind grids and to study its influence on the onset of laminar-turbulent bypass transition in a boundary layer on a flat plate. To assess the isotropy of turbulence, the skewness and kurtosis factors of the flow velocity distribution were determined. Several longitudinal scales of turbulence were determined and compared (integral, dissipation, Taylor microscale, and Kolmogorov scale) for different grids and different velocities of the mean flow 4, 6, 10, 15, and 20 m/s.
Rocznik
Tom
Strony
23--44
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Institute of Fluid Flow Machinery Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • Institute of Fluid Flow Machinery Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
  • [1] Mayle R.E.: The Role of laminar – turbulent transition in gas turbine engines. J. Turbomach. 113(1991), 4, 509–537.
  • [2] Hall D.J., Gibbings J.C.: Influence of stream turbulence and pressure gradient on boundary – layer transition. J. Mech. Eng. Sci. 14(1972), 2, 134–146.
  • [3] Abu-Ghannam B.J., Shaw R: Natural transition of boundary layers – The effects of turbulence, pressuer gradient, and flow history. J. Mech. Eng. Sci. 22(1980), 5, 213–228.
  • [4] Jonas P., Mazur O., Uruba V.: On the receptivity of the by – pass transition to the length scale of the outer stream turbulence. Eur. J. Mech. B-Fluids 19(2000), 5, 707–722.
  • [5] Epik E.J.: Bypass laminar-turbulent transition in a thermal boundary layer. Inz. Fiz. Zh. (J. Eng. Phys. Thermophys.) 74(2001), 4, 105–110 (in Russian).
  • [6] Barret M.J., Hollingsworth D.K.: On the calculation of length scales for turbulent heat transfer correlation. ASME J. Heat Transfer 123(2001), 5, 878–883.
  • [7] Hinze I.O.: Turbulence. McGraw Hill Book Company, 1975.
  • [8] Dyban E.P., Epik E.J., Suprun T.T., Juszyna L.E.: Simulation of flows with controlled turbulence levels and turbulence scales. Promyshlennaya teplotechnika (Ind. Heat Eng.) 18(1996), 2, 60–73 (in Russian).
  • [9] Ames F.E., Moffat R.J.: Heat Transfer with High Intensity, Large Scale Turbulence: The Flat Plate Turbulent Boundary Layer and the Cylindrical Stagnation Point. Report No. HMT-44, Department of Mechanical Engineering, Stanford University, Stanford 1990.
  • [10] Townsend A.A.: The Structure of Turbulent Shear Flow. Cambridge University Press, 1956.
  • [11] Kraichnan R.H.: Isotropic turbulence and inertial-range structure. Phys Fluids 9(1966), 9, 1728.
  • [12] Xiao H., Wang J., Jenny P.: Dynamic evaluation of mesh resolution and its application in hybrid LES/RANS methods. Flow Turbul. Combust. 93(2014), 1, 141–170.
  • [13] Batchelor G.K.: The theory of homogeneous turbulence. Cambridge University Press, 1953.
  • [14] Valente P.C., Vassilicos J.C.: The decay of turbulence generated by a class of multiscale grids. J. Fluid Mech. 687(2011), 300–340.
  • [15] Taylor G.I.: Statistical theory of turbulence. Proc. R. Soc. A 151(1935), 873, 421–444.
  • [16] Batchelor G.K., Townsend A.A.: Decay of isotropic turbulence in the initial period. Proc. R. Soc. A 193(1948), 1035, 539–558.
  • [17] Comte-Bellot G., Corrsin S.: The use of a contraction to improve the isotropy of gridgenerated turbulence. J. Fluid. Mech. 25(1966), 4, 657–682.
  • [18] Sreenivasan K.R.: On the scaling of the turbulence energy dissipation rate. Phys. Fluids 27(1984), 5, 1048.
  • [19] Lumley W.K.: Some comments on turbulence. Phys. Fluids A 4(1992), 2, 203–211.
  • [20] Van Atta C.W., Chen W.Y.: Measurements of spectral energy transfer in grid turbulence. J. Fluid Mech. 38(1969), 4, 743–763.
  • [21] Mohamed M.S, LaRue J.C.: The decay power law in grid-generated turbulence. J. Fluid Mech. 219(1990), 195–214.
  • [22] Ting D.S.K.: Some Basics of Engineering Flow Turbulence (revised Edn.). Naomi Ting’s Book, Windsor 2013.
  • [23] Jimenez J.: Turbulent velocity fluctuations need to be Gaussian. J. Fluid Mech. 376(1998), 139–147.
  • [24] Gad-el-Hak M., Corrsin S.: Measurements of the nearly isotropic turbulence behind a uniform jet grid. J. Fluid Mech. 62(1973), 1, 115–143.
  • [25] Makita H.: Realization of a large-scale turbulence field in a small wind tunnel. Fluid Dyn. Res. 8(1991), 1-4, 53–64.
  • [26] Mydlarski L., Warhaft Z.: On the onset of high-Reynolds-number grid-generated wind tunnel turbulence. J. Fluid. Mech. 320(1996), 331–368.
  • [27] Mydlarski L., Warhaft Z.: Passive scalar statistics in high-Peclet-number grid turbulence. J. Fluid. Mech. 358(1998), 135–175.
  • [28] Birouk M., Sarh B., Gokalp I.: An attempt to realize experimental isotropic turbulence at low Reynolds number. Flow Turbul. Combust. 70(2003), 1-4, 325–348.
  • [29] Johnson M.W., Pinarbasi A.: The effect of pressure gradient on boundary layer receptivity. Flow Turb. Combust. 93(2014), 1, 1–24.
  • [30] Fouladi F., Henshaw P., Ting D.S.K.: Turbulent flow over a flat plate downstream of a finite height perforated plate. ASME J. Fluid Eng. 137(2015), 2, 021203-1.
  • [31] Grzelak J., Wierciński Z.: The decay power law in turbulence generated by grids. Trans. Inst. Fluid-Flow Mach. 130(2015), 93–107.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7998384e-55fe-40f6-99ec-d466a5343a6f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.