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Abstract
An experimental investigation of the turbulent flow over a flat plate in a subsonic wind tunnel
was carried out. The enhanced level of turbulence was generated by five wicker grids with square
meshes, and different parameters (diameter of the grid rod 0.3–3 mm and the grid mesh size
1–30 mm). The velocity of the flow was measured by means of a 1D hot-wire probe, suitable for
measurements in a boundary layer. The aim of the investigation was to explore the turbulence
length scale in the flow behind grids and to study its influence on the onset of laminar-turbulent
bypass transition in a boundary layer on a flat plate. To assess the isotropy of turbulence,
the skewness and kurtosis factors of the flow velocity distribution were determined. Several
longitudinal scales of turbulence were determined and compared (integral, dissipation, Taylor
microscale, and Kolmogorov scale) for different grids and different velocities of the mean flow
4, 6, 10, 15, and 20 m/s.
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Nomenclature

Ā – average, 1
n

∑n

(i=1)Ai

〈A〉 – time average
a – acceleration parameter
Ck – Kolmogorov constant
Cε – constant in Eq. (14)
d – diameter of a grid rod
D(k) – dissipation spectrum
E(k) – turbulence energy spectrum
i – plate angle of attack
k – longitudinal wave number, coefficient of the formula (21)
kd – wave number corresponding to ld scale
ke – wave number corresponding to le scale
kη – wave number corresponding to the Kolmogorov scale
KT – turbulent kinetic energy
K(u) – kurtosis factor
L – integral length scale
l – turbulence length scale
ld – scale of the eddies corresponding to the maximum of dissipation spectrum
le – scale of the eddies corresponding to the maximum of energy spectrum
LS – distance between the grid and the leading edge of the plate
Lu – dissipation length scale
M – mesh size
m – exponent of the formula (21)
r – radius of the plate leading edge
R(τ ) – time correlation coefficient
Rex – Reynolds number
Re ∗ ∗ – momentum thickness Reynolds number
Reλ – Taylor Reynolds number
S(u) – skewness factor
t – time
Tu – turbulence scale
U – velocity in x direction
x – streamwise distance

Greek symbols

δ ∗ ∗ – momentum thickness
ε – rate of dissipation of turbulence kinetic energy
η – Kolmogorov length scale
λ – Taylor length microscale
τ – time increment
τE – turbulence time microscale
ν – kinematic viscosity
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1 Introduction

The external turbulence causes an earlier by-pass laminar, turbulent transition
of the flow in a boundary layer which consequently leads to an increase of skin
friction. It is possible to characterize the turbulence by its two main measures:
intensity (usually related to a velocity along an average stream line) and scale
(which has a linear dimension in case of length scale). The influence of turbulence
intensity on transition is quite well known. The formulas describing the relation
between the intensity and the onset Reynolds number are given for example by
Mayle [1], Hall and Gibbings [2] or Abu-Ghannam and Shaw [3]. But there are
still very few investigations relating to the influence of the turbulence scale on
laminar-turbulent transition. Mayle, in his review, suggested that the transition
appears earlier when the mesh of the grid is smaller (what implies a smaller
length scale) [1]. Also Jonas, Mazur, and Uruba suggested that the inception and
the transition length depend on the turbulence scale [4]. The authors of both
papers claim that the use of their correlations are rather limited. Experimental
results of [4] indicate that the boundary layer laminar-turbulent inception moves
downstream with the decreasing of turbulence scale; the length of transition also
becomes shorter. For larger values of dissipation length scale, Lu, the laminar-
turbulent transition process ends earlier. The turbulence intensity at the leading
edge of the plate was maintained constant (Tu = 3%), whilst the values of the
dissipation length scale were changing: (2.2 < Lu < 33.3) mm. The outcome of
the investigation was a following correlation:

Re∗∗t = (245/Lu)0.535 , (1)

where Ret∗∗ is the momentum thickness Reynolds number, Re∗∗t = Uδ∗∗t /ν, at
the onset of transition, here U is the mean flow velocity, δt∗∗ is the momentum
thickness at the onset of transition, and ν is the kinematic viscosity of the fluid.
Definitions of turbulence intensity and scales are precisely described below. Un-
fortunately, the above correlation is not dimensionless (the scale of turbulence has
of course the dimension of length).

In the other author’s opinion (e.g., [5]) it seems to be quite opposite to the
results of investigations presented in [4]: the reducing of turbulence scale should
provide an earlier inception, i.e., at the lower momentum thickness Reynolds
number. That is why the previous investigations require some revision.
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2 Review of turbulence scales definitions

Barrett and Hollingsworth describe few longitudinal scales of turbulence, although
the authors report there are more than ten [6]. One can distinguish the integral
scales – which are associated with the largest eddies in the flow, dissipation scales,
microscales and Kolmogorov scales. The longitudinal integral scale can be defined
as follows:

L = U

∫

∞

0
R(τ) dτ , (2)

where TE =
∫

∞

0 R(τ) dτ is called the Eulerian integral time scale [7] and R(τ) is
a time correlation coefficient:

Rii(τ) =
〈ui(x, t)ui(x, t+ τ)〉

√

〈

u2i (x, t)
〉 〈

u2i (x, t+ τ)
〉

. (3)

The velocity field is described by the coordinate system (i = x, y, z) where x is an
axis oriented in the direction of the mean flow velocity (U = Ux, Uy = Uz = 0).
Velocity U and its fluctuations u describe variables in the x direction, Uy and uy
in the y direction, Uz and uz in the z direction. In case of the isotropic turbulence
the turbulence characteristics do not depend on the spatial orientation of the
coordinate system (u2 = u2y = u2z) [7].

Another length scale is related to the dissipation of turbulent kinetic energy.
It can be interpreted as an average dimension of the eddies containing most of the
energy (so-called ‘energy scales’) [6]. Assuming that the turbulence is isotropic,
and knowing that the dissipation of energy causes the decrease of the streamwise
fluctuating component, u, one can get the energy length scale:

Lu = −(u′2)3/2/

(

U
∂u′2

∂x

)

, (4)

where u′ =
√

u2 is the streamwise velocity standard deviation. Knowing that for
the isotropic turbulence the rate of dissipation of turbulence kinetic energy can
be written as

ε = −
3

2
U
∂u

′2

∂x
(5)

(Dyban et al. [8], see also Ames and Moffat [9]), one can determine the scale Lu
as follows:

Lu =
3

2

u′3

ε
. (6)
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To distinguish the length scale Lu, Eq. (4) or Eq. (6) from the integral scale L
(2), we will call it the dissipation length scale.

The measure of the average dimension of the small eddies involved in fluid
motion is the time microscale of turbulence

τE =

(

−
1

2

∂2R

∂t

∣

∣

∣

∣

t=0

)−1/2

=

(

1

2
〈

u2i
〉

〈

(

∂ui
∂t

)2
〉)

−1/2

, (7)

which can be called the Eulerian dissipation time scale [7]. Finally, between the
time microscale, τE, and the length microscale, λ, the simple relation is received

λ = UτE . (8)

The scale λ is called the Taylor microscale (otherwise, Hinze names this one the
dissipation scale [7]).

The characteristic turbulence scales are also associated with the particular
ranges of the turbulence energy spectrum, E (k). Special attention can be paid
to the form of E (k) in the inertial subrange, for which the Kolmogorov spectrum
law is fulfilled:

E(k) = Ck ε
2/3 k−5/3 , (9)

where k is the longitudinal wave number and Ck is the Kolmogorov constant
(for a one-dimensional spectrum). The universal equilibrium range of the energy
spectrum, in which the function E (k) is under the influence of only two values,
i.e., dissipation, ε, and the kinematic viscosity of the fluid, ν, can be described by
the following scale:

η =
1

kη
=

(

ν3

ε

)1/4

. (10)

This is the measure of the smallest eddies in the flow and it is called the Kol-
mogorov length scale (kη is the wave number corresponding to this scale).

In the dissipative range of the energy spectrum one can distinguish one more
characteristic scale, ld = 1/kd, which determines the size of the eddies correspond-
ing to the maximum of the dissipation spectrum

ε =

∫

∞

0
D(k)dk = 2ν

∫

∞

0
k2E(k)dk . (11)

The maximum of the function D(k) is defined by the wave number kd within
a range of 0.15 ≤ kη ≤ 0.5 (Townsend [10]) or 0.09 ≤ kη ≤ 0.5 in the case of
very large Reynolds numbers (Hinze [7], after Kraichnan [11]). The maximum of
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the E (k) function, determined by the wave number ke = 1/le, lies in a relatively
narrow range occupied by the eddies containing most of the energy and corre-
sponding to the length scale similar to the integral scale.

The turbulent integral length scale, L, can also be estimated based on the
total turbulent kinetic energy, KT = 1

2u
′

iu
′

i, and the dissipation rate, ε, [12]:

L =
K

3/2
T

ε
. (12)

Otherwise, at enough high Reynolds numbers, the local viscous dissipation rate,
ε, of the local average turbulent kinetic energy scales with K and a local correla-
tion length scale L (see, for example Batchelor [13], Townsend [10], Valente and
Vasilicous [14]):

ε∼
K

3/2
T

L
. (13)

Referring to Taylor’s theory [15], for decaying homogeneous isotropic turbulence
or to analyses of wind-tunnel simulations of such turbulence (e.g., Batchelor and
Townsend [16], Comte-Bellot and Corrsin [17]) we can write the integral scale in
the form

L = Cε
u′3

ε
, (14)

where Cε is a constant independent on time, space and Reynolds number when
the Reynolds number is large enough. The data compilation of Sreenivasan [18],
suggested that Cε does become constant at Taylor Reynolds number (based on
the microscale λ), Reλ = uλ/ν, larger than about 50 for wind-tunnel turbulence
generated by various biplane square-mesh grids, but it seems to differ from the
results of other authors’ investigations, e.g., Lumley [19], Valente and Vasilicous
[14].

3 Isotropy of turbulence

In general, the turbulence intensity is defined as the ratio of standard deviation
to the mean flow velocity, U. If the velocity field is described by the coordinate
system xi, where x1 is an axis oriented in the direction of the mean flow velocity
(U = U 1, U 2 = U 3 = 0), a ratio

Tu = Tu1 =

√

u21

U
=
u′1
U

(15)
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defines the longitudinal turbulence intensity, while

Tu2 =
u′2
U

and Tu3 =
u′3
U

(16)

are the components of the transverse intensity. In case of isotropic turbulence
which characteristics do not depend on the spatial orientation of the coordinate
system, we have

u21 = u22 = u23 . (17)

The isotropic turbulence has a probability density function (PDF) close do Gaus-
sian [20]. One of the methods to assess the isotropy of turbulence is to determine
the skewness factor in the flow velocity distribution [21,22]

S(u) =
u3
√

u2
3
. (18)

The turbulence is isotropic, if the skewness is zero and hence, a PDF of the
variable u has normal distribution.

A similar way to assess the turbulence isotropy is the kurtosis (flatness factor)
that is also a descriptor of the shape of the probability distribution of the velocity
fluctuations. The measure of kurtosis is a fourth central moment of mean velocity
divided by the standard deviation to the fourth power

K(u) =
u4
√

u2
4
. (19)

When K (u) = 3, the probability distribution is normal. When K (u) < 3 or K (u)
> 3 probability distribution is called platykurtic (flat shape) or leptokurtic (fo-
cused shape), respectively.

In the opinion of Batchelor the distribution can be considered as normal for
the value of K(u) = 2.86 [13], Jimenez gives the value of K (u) = 2.85 [23]. The
grid distance, x, from which turbulence may be considered to be nearly isotropic,
is x/M > 40 (Gad-el-Hak and Corrsin [24]), where M is the mesh size of a grid.

One of the methods to gain isotropic turbulence is to achieve high Reynolds
number that is difficult with the use of ‘conventional’ (or static) grids. In the
opinion of Gad-el-Hak and Corrsin [24], turbulence isotropy improvement can
be attained by the active (or dynamic) grids that are equipped with control-
lable nozzles. This technique has been used for example by Makita [25] and
improved by Mydlarski and Warhaft [26,27], where a Taylor Reynolds number
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of the order of 700 was achieved [27]. An attempt to gain isotropic turbulence
at low Reynolds number was recently made by Birouk, Sarh and Gokalp [28].
For this purpose an experimental apparatus, a turbulence chamber ‘box’, was
used to generate an isotropic turbulent flow field in the center of the chamber,
even though the Reynolds number achieved in this experiment is considered to be
small, Reλ < 100.

4 Experimental equipment and procedure

The investigation was carried out in the subsonic wind tunnel of low level of
turbulence, Tu ≈ 0.1% and with velocity range up to 100 m/s. The sketch
of the test section and the details of the leading edge is shown in Fig. 1. The
measurement chamber with octagonal cross-section has the following dimensions
(width, height, length) 600 x 460 x 1500 mm. The boundary layer was studied on
the upper surface of the flat plate of the length 700 mm. The enhanced level of
turbulence was generated by five different wicker metal grids (with square meshes)
of the following dimensions:

1) d = 0.3 mm, M = 1 mm,
2) d = 0.6 mm, M = 3 mm,
3) d = 1.6 mm, M = 4 mm,
4) d = 3.0 mm, M = 10 mm,
5) d = 3.0 mm, M = 30 mm

(named appropriately G1, G2, G3, G4, and G5), where d is a diameter of the grid
rod and M is a grid mesh size. Grids were placed at different distances upstream
of the plate leading edge: Ls = 450, 410, 370, and 330 mm. Also five different
incoming velocities were used: U = 10, 15, 20 m/s (for G1 and G2), U = 6, 10,
15, and 20 m/s (for G3), U = 6 and 10 m/s (for G4 ) and U = 4 and 6 m/s (for
G5).

The coordinate system for the turbulence intensity and scale measurements is
fixed to the grid with x -coordinate parallel to the mean velocity of the flow. The
coordinate system for boundary layer measurements is fixed to the leading edge
of the plate. The plate leading edge location is equal to Ls downstream of the
grid, as mentioned above.

The velocity and turbulence measurements were carried out by means of the
StreamLine thermoanemometry system (Dantec) with the software Stream-Ware
3.41.20 and the hot-wire probe 55P15 of Dantec suitable for measurements in
boundary layer.
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Figure 1: Test section of wind tunnel: a) 1 – flat plate, 2 – grid at the distance Ls from the
leading edge; b) shape of the leading edge.

First measurements of the turbulence decay behind all grids were carried out, and
then the velocity profiles in the boundary layer on a flat plate in different distances
from the leading edge. To avoid separation at the leading edge the incidence angle
of the plate i = −1.63◦ was set (boundary layer with favourable pressure gradient).
Therefore a small velocity gradient along the plate was measured. A value of the
acceleration parameter

a =
ν

U2

dU

dx
, (20)

where U is the mean flow velocity and ν is the kinematic viscosity, was approxi-
mately 2.7 × 10−7. The effect of favourable pressure gradient on boundary layer
receptivity one can find, e.g., in [29].

The boundary layer profiles were determined by the measurement of velocity
in about forty points across the boundary layer. The sampling frequency of the
velocity signal was 6 kHz and 40000 samples were taken, i.e., for about 6.67 s.
Before every measurements series the calibration of system was carried out.

5 Investigation results

5.1 Turbulence isotropy tests

Many of the formulas listed in this article refer to the isotropic turbulence, so
it was important to assess what kind of turbulence we have to do with in the
experiment. First of all, isotropy of turbulence of the flow behind the grids was
investigated. To assess the value of the distance x/M (M – mesh size), from which
the turbulence is considered to be isotropic, skewness factor along the test section
of the tunnel in case without turbulence generator (without grid) was measured.
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Values of skewness for mean flow velocities U = 6, 10, and 15 m/s are displayed
in Fig. 2. Here the distance x is normalized by the measurement chamber length
Lc = 1500 mm. The turbulence intensity, Tu, did not exceed in this case the value
of 0.13 %. As we can see, skewness factor S (u), for all three flow velocities ranges
approximately from 0 to 0.06 throughout the measured region. It was assumed
that turbulence is isotropic if the skewness does not exceed the value of 0.06.

Figure 2: Skewness along the measurement chamber in case of no turbulence generator, for mean
flow velocities U = 6, 10, and 15 m/s.

Figures 3 and 4 present the skewness factor, S (u), and kurtosis, K (u), for
grids G3 and G5, depending on x/M. Fig. 3 shows the results for velocities
U = 6, 10, 15, and 20 m/s. Directly behind the grid, for x = 90 mm, i.e., x/M
= 22.5, skewness is different from zero (Fig. 3a), but does not exceed 0.13 at the
highest point. Then tends to zero, which indicates that the probability density
function of the variable u′ approaches the Gaussian distribution. Over the plate
(from x/M = 112.5 which corresponds to the point of the leading edge) we observe
the skewness not exceeding 0.06. Kurtosis, which is presented in Fig. 3b, is a bit
greater than 3, but does not exceed the value of 3.06. Over the plate K (u)
ranges from 2.86 to 3.04, which means that turbulence can be considered as nearly
isotropic.

Directly behind the grid G5 (Fig. 4) the flow is strongly anisotropic. At the
distance of x/M = 1.5 from the grid, S(u) = −0.09, K (u) = 2.59 for U = 4 m/s
and S(u) = −0.27, K(u) = 2.67 for U = 6 m/s. The skewness is negative because
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of the bar wakes velocity fluctuations that are smaller than the average velocity
flow fluctuations. Generally, the sign of S (u) indicates the direction of the largest
velocity fluctuations while the magnitude of S (u) shows the degree of asymmetry
in the distribution of the fluctuations [30]. From the leading edge (x/M = 15) we
observe general increase in values of skewness and kurtosis factors. For x/M = 33
skewness is still high, S (u) = 0.16, and K (u) is smaller than 2.85, which means
the PDF of the velocity fluctuations is still not Gaussian, hence the turbulence is
anisotropic. The values of S (u) and K (u) for other grids and velocities one can
find, for example, in [31]. The summary of turbulence isotropy investigation for
grids G1–G5 near the plate edge (LS = 450 mm) has been presented in Tab. 1.

(a) (b)

Figure 3: Skewness (a) and kurtosis (b) for the grid G3 and flow velocities U = 6, 10, 15, and
20 m/s.

(a) (b)

Figure 4: Skewness (a) and kurtosis (b) for the grid G5 and flow velocities U = 4 and 6 m/s.
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Table 1: Values of skewness and kurtosis for grids G1–G5 near the plate leading edge
(LS = 450 mm).

Grid U [m/s] S(u) K(u) x/M (x = Ls = 450 mm)

G1 (M=1, d=0.3) 10–20 -0.01 – (-0.005) 2.97 – 3.03 450

G2 (M=3, d=0.6) 15–20 0.02 – 0.04 2.87 – 2.89 150

G3 (M=4, d=1.6) 6–20 -0.01 – 0.05 2.92 – 2.98 112.5

G4 (M=10, d=3) 6–10 0.04 – 0.07 2.87 – 2.89 45

G5 (M=30, d=3) 4–6 -0.13 – (-0.11) 2.60 – 2.70 15

Summarizing, turbulence of the flow behind grids was considered to be nearly
isotropic from the distance x/M = 70. The values of x/M, S (u), and K (u) for
grids G1–G4 and for all flow velocities used in the experiment are displayed in
Tab. 2. (For G1 the distance is x/M = 90, but it was the first point measured
behind the grid, i.e., x = 90 mm).

Table 2: Values of the distance x/M for grids G1–G4, from which the turbulence is considered
to be isotropic.

Grid U [m/s] S(u) K(u) x/M

G1

10 0.050 3.00 90

15 0.057 3.00 90

20 -0.033 3.03 90

G2

10 0.036 2.90 60

15 0.035 2.90 60

20 0.057 2.88 70

G3

6 0.049 2.93 60

10 0.059 2.94 66

15 0.028 2.94 56

20 -0.0234 2.97 66

G4
6 0.047 2.91 61

10 0.060 2.94 67
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5.2 Scales of turbulence

To investigate the turbulence scale dependence on the transition inception, which
was the main goal of the experiment, determining the length scale behind the grid
was first needed. To determine the dissipation scale, Lu, and Kolmogorov scale,
η, knowledge of the rate of turbulence kinetic energy dissipation, ε, was required.
Therefore the turbulence energy spectrum, E (k), was measured.

An example of the spectrum over the boundary layer, for the selected grid
G3 and mean velocity U = 10 m/s is plotted in Fig. 5. The grid distance in
this case was Ls = 450 mm and the thermoanemometric probe distance was
230 mm downstream from the leading edge. The straight line (k−5/3) represents
the inertial subrange of the turbulence spectrum. For the above conditions the
subrange of wave numbers are 204 l/m ≤ k ≤ 620 l/m which gives the values of
the range of length scale 1.6 mm ≤ l ≤ 4.9 mm.

Figure 5: Turbulence energy spectrum, E (k), for turbulence generated by the grid G3, flow
velocity U = 10 m/s, over the plate at the distance of 230 mm from the leading edge.

The time correlation coefficient (3) and the parabola whose positive root deter-
mines the time microscale, τE, are plotted in Fig. 6. In this case, according to
the formula (8), turbulence time microscale τE = 0.28 ms, which gives the Taylor
microscale λ = 2.8 mm, so it is included in the inertial subrange of the turbulence
spectrum (Fig. 5). As recommended by Fouladi et al. [30] the time microscales
should be derived from the intersection of a parabola, fitted to the first three to
five points of the correlation curve. In this case it was not possible, because the
sampling frequency was 6 kHz, so only two first points were taken.
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Figure 6: The time correlation coefficient, R, versus time, t, (solid line) and the parabola fitted
curve (solid line with circles), which determines the time scale, τE , for G3, U = 10 m/s,
at the distance of 230 mm downstream from the leading edge.

Figure 7: Reynolds number based on the scale of turbulence behind the grid G2, for mean flow
velocity U = 20 m/s: • – integral scale L Eq. (2), x – dissipation scale Lu Eq. (6),
N – Taylor microscale λ Eq. (8), ◦ – Kolmogorov scale η Eq. (10).

In Fig. 7 different kinds of turbulence length scales are presented, for the selected
grid G3, the velocity of the flow U = 10 m/s and the grid distance Ls = 450 mm
from the leading edge of the plate. To make the values normalized, Reynolds
numbers were used. The abscissa presents Reynolds number based on distance
x downstream from the leading edge, Rex = Ux/ν, and the ordinate – Reynolds
number based on corresponding length scale – Rescale = Uscale/ν here scale repre-
sents the characteristic linear dimension. The integral scale L, associated with the
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largest eddies in the flow has of course the largest dimension; then we have a bit
smaller dissipation scale, Lu, Taylor microscale, λ, and finally the Kolmogorov
scale, η, as the measure of the smallest eddies. To compare turbulence scales for
different grids but for the same flow velocity U = 10 m/s, Reynolds numbers
based on all four mentioned length scales have been plotted (Fig. 8). Generally,
the larger grid dimensions M and d, the larger scales values L and Lu. The ex-
ception refers to the Taylor microscale, which is almost the same for all four grids
G1–G4 and Kolmogorov scale, which has the biggest value in case of the grid with
the smallest parameters.

Figure 8: Length scale Reynolds number for mean velocity U = 10 m/s and different grids G1,
G2 , G3 , and G4: a) integral scale L, b) dissipation scale Lu, c) Taylor microscale λ,
d) Kolmogorov scale η.

To compare length scales for one grid (G3) but different flow velocities (U =
6, 10, 15, and 20 m/s), Fig. 9 is displayed. Generally, the larger value of the
flow velocity, the larger value of the integral scale Reynolds number, ReL, and
dissipation scale Reynolds number, ReLu. For the Taylor microscale λ and the
Kolmogorov scale η, Reynolds numbers lie almost on the same curve, but one
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Figure 9: Length scale Reynolds numbers for the grid G3 and different flow velocities U = 6,
10, 15, and 20 m/s: a) integral scale L, b) dissipation scale Lu, c) Taylor microscale
λ, d) Kolmogorov scale η.

can notice the opposite trend for Reη, which has the biggest value in case of the
smallest velocity, 6 m/s. Looking at both Figs. 8 and 9 it may be stated that
reducing the wall shear stress causes a slower evolving of large eddies and faster
evolving of small eddies.

5.3 Correlation of the transition

Having determined the length scale of turbulence and the momentum thickness
Reynolds number of the onset of transition, Re∗∗t , one can find the correlation
function. To create the correlation, the dissipation scale, Lu, values at the leading
edge of the plate were used. The turbulence intensity at the leading edge for grids
G1–G4 was from Tu = 0.4% to 3.4% and for grid G5 exceeded the value of 4%,
moreover the turbulence was not isotropic at the measured points in case of grid
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G5. All numerical values of distance Ls, turbulence intensity, Tu, and scale, Lu,
at the plate leading edge (x0) for all grids and flow velocities are presented in
Tab. 3.

The results of present investigations seem to confirm the results of Jonas [4],
but only if we make correlation for all grids together (Fig. 10; the dashed line
represents the formula (1)). But when we look at every grid separately, the
results seem not to be that obvious. Because of the result points dispersion the
investigations need to be verified, but according to the present ones the momentum
thickness Reynolds number, Re∗∗t , increases (which means the transition appears
later) when Lu increases, for grids G2 and G3. If the values of the Reynolds
number Re∗∗t start to become smaller than 200 (as we have for the grid G5), the
transition appears earlier when the values of the length scale Lu are larger.

Figure 10: Momentum thickness Reynolds number at the onset of transition as a function of
turbulence scale, Lu, for different grids, flow velocities and grid distances; the dashed
line represents the formula (1).

The turbulence scale at the formula (1) can be changed in the dimensionless
formula using one of the grid parameters

Re∗∗t = k

(

Lu

d

)m

, (21)

where we have chosen a rod diameter, d. Figure 11 shows the results for Re∗∗t as
a function of Lu/d, for grids of different dimensions. For G1–G4 coefficient of the
formula is k = 158, while exponent m = 0.455, and for G5 k = 305, m = –0.436.
When the value of Lu/d increases, the transition appears later for the grids G1–
G4 and earlier for the grid G5, but we keep in mind that in the last case the
turbulence is anisotropic. Besides, the values for the grid G4 seem to belong to
both correlations.

ISSN 0079-3205 Trans. Inst. Fluid-Flow Mach. 139(2018) 23–44



40 J. Grzelak and Z. Wierciński

Table 3: Values of distance Ls, turbulence intensity and scale at plate leading edge for grids
G1–G5 and all flow velocities.

Grid M [mm] d [mm] LS [mm] U [m/s] Tu(x0) [%] Lu(x0) [mm]

G1 1 0.3 450 10 0.41 1.29
15 0.41 1.40
20 0.39 1.41

410 10 0.42 1.34
15 0.42 1.48
20 0.40 1.46

370 10 0.47 1.17
15 0.46 1.29
20 0.44 1.26

310 10 0.51 1.17
15 0.52 1.31
20 0.49 1.32

G2 3 0.6 450 10 0.81 3.06
15 0.74 2.77
20 0.66 2.24

410 10 0.86 2.91
15 0.79 2.67
20 0.70 2.13

370 10 0.92 2.77
15 0.84 2.49
20 0.76 2.08

310 10 0.98 2.53
15 0.92 2.42
20 0.82 2.11

G3 4 1.6 450 6 1.47 4.41
10 1.58 5.43
15 1.52 5.60
20 1.41 5.20

410 6 1.60 4.26
10 1.68 5.12
15 1.63 5.01
20 1.49 4.55

370 6 1.74 4.14
10 1.82 4.82
15 1.77 4.86
20 1.62 4.37

310 6 1.89 4.09
10 1.99 4.66
15 1.92 4.62
20 1.76 4.07
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Tab. 3 continued

Grid M [mm] d [mm] LS [mm] U [m/s] Tu(x0) [%] Lu(x0) [mm]

G4 10 3 450 6 2.55 6.30
10 2.56 6.75

410 6 2.65 6.62
10 2.69 6.90

370 6 3.04 6.03
10 3.09 6.28

310 6 3.36 5.87
10 3.40 6.17

G5 30 3 450 4 4.13 9.81
6 4.13 11.93

410 4 4.44 10.53
6 4.19 14.57

370 4 4.63 11.82
6 4.39 15.27

310 4 4.98 14.88
6 4.66 15.47

Figure 11: Momentum thickness Reynolds number at the onset of transition as a function
of Lu/d.

6 Concluding remarks

To investigate the phenomena of turbulent flow, five wicker grids with square
meshes and different parameters (diameter of the grid rod range 0.3 mm≤ d ≤3 mm
and the grid mesh size range 1 mm ≤ M ≤ 30 mm were used to generate tur-
bulence. The turbulence intensity at the leading edge of the plate was from
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Tu = 0.4% to 4%. Several longitudinal scales of turbulence were determined, i.e.,
integral scale L, dissipation scale, Lu, Taylor microscale, λ, and Kolmogorov scale,
η. To assess the isotropy of turbulence, the skewness and kurtosis factors of the
flow velocity distribution were determined. For grids G1–G4, where respectively
(d = 0.3 mm, M = 1 mm, Tu = 0.4%)–(d = 3 mm, M = 10 mm, Tu = 3.4 %),
the isotropic turbulence throughout the measured chamber was obtained. For the
grid G5 (d = 3 mm, M = 30 mm, Tu = 4 %) the skewness and kurtosis factors
indicated that the turbulence was anisotropic.

The influence of the turbulence intensity and turbulence scale on the laminar–
turbulent bypass transition location on a flat plate was investigated. In this case
the dissipation scale, Lu, at the leading edge was taken into account. For this
purpose, the momentum thickness Reynolds number, Ret∗∗, at which transition
onset appears, was calculated. Present investigations seem to confirm the results
indicating that the boundary layer laminar-turbulent inception moves downstream
with the decreasing of turbulence scale, but only if we make correlation for all grids
together. But when we take into account a single grid, especially G2 (d = 0.6 mm,
M = 3 mm) and G3 (d = 1.6 mm, M = 4 mm), the results are not so obvious
or even seem to be quite opposite. However, in present investigation turbulence
intensity was also the variable (the same as turbulence scale) and not constant as
it was for example in paper of Jonas et al. [4].

Dividing the turbulence scale by the grid rod diameter, dimensionless formula
was proposed (21). Finally, we can say that the investigation indicates that the
decreasing of turbulence scale (divided by the grid wire diameter, d) provides
an earlier inception, i.e., the lower momentum thickness Reynolds number for
grids G1–G4, but a later inception for grid G5, which generates anisotropic flow
turbulence in the whole test section.

It seems reasonable to take into account also other turbulence length scales,
because till now, only the dissipation length scale Lu was used to make the cor-
relation of the transition. Besides parameter d was the only one that was used
to propose the dimensionless formula of the transition correlation. Probably the
thickness, momentum or displacement thickness of the boundary layer could be
taken into account. Moreover the result points’ scatter is quite big and the present
investigations still need some revision and improvement.

Received 3 Oct. 2016 (revised form 3 April 2018)
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