PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Issues on numerical modelling of transport processes in granular reactive media – an approach with thermal relaxation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The steadily growing interest in applying granular media in various novel and advanced technologies, particularly in the energy sector, entails the need to gain in-depth knowledge of their thermal and flow behaviour and develop simulation predictive tools for systems’ design and optimisation. The focus of the present study is on the numerical modelling of the thermal decomposition of solid fuel grains in a packed bed while considering a non-classical description of heat transfer in such a medium. The work aims to assess the influence of the relaxation time and thermo-physical properties of the medium on the nature of the solution and highlight the factors that are the source of local non-equilibrium affecting thermal wave speed propagation. The analysis of the predicted temperature distribution was carried out based on the developed transient one-dimensional thermal and flow model, taking into account the moisture evaporation and the devolatilization of fuel particles. Obtained simulation results showed a significant increase in the temperature gradients with increased relaxation times for the case of wet granular bed. They also demonstrated the variable dynamics of thermal wave propagation due to the change in the packed bed structure with the process progress. For a relaxation time of 100 s, a several-fold increase in the temperature signal propagation speed during the fuel bed thermal decomposition was predicted.
Rocznik
Strony
5--12
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, Gdańsk PL 80-231, Poland
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, Gdańsk PL 80-231, Poland
Bibliografia
  • [1] Targui, N., & Kahalerras, H. (2008). Analysis of fluid flow and heat transfer in a double pipe heat exchanger with porous structures. Energy Conversion and Management, 49, 3217–3229.doi:10.1016/j.enconman.2008.02.010
  • [2] Wang, B., Hong, Y., Hou, X., Xu, Z., Pengfei Wang, P., Fang, X., & Ruan, X. (2015). Numerical configuration design and investigation of heat transfer enhancement in pipes filled with gradient porous materials. Energy Conversion and Management, 105, 206-215. doi: 10.1016/j.enconman.2015.07.064
  • [3] Mahdi, J.M., Mohammed, H.I., Hashim E.M., Talebizadehsardari, P., & Nsofor, E.C. (2020). Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system. Applied Energy, 257,113993. doi: 10.1016/j.apenergy.2019. 113993
  • [4] Song, Y., Xu, Q., Liu, X., Xuan Y., & Ding,Y. (2022). Highperformance thermal energy storage and thermal management via starch-derived porous ceramics-based phase change devices. International Journal of Heat and Mass Transfer, 197, 123337. doi: 10.1016/j.ijheatmasstransfer.2022.123337
  • [5] Deka, P., & Szlęk, A. (2022). Thermal energy storage in buildings: Opportunities and challenges. Archives of Thermodynamics, 43(4) 21–61. doi: 10.24425/ather.2022.144405
  • [6] Messaoud, H., Adel, S., & Ouerdia, O. (2023). Mixed convection heat transfer of a nanofluid in a square ventilated cavity separated horizontally by a porous layer and discrete heat source. Archives of Thermodynamics, 44(2) 87–114. doi: 10.24425/ather.2023.146560
  • [7] Janusz, Sz., Szudarek, M., Rudniak L., & Borcuch, M. (2023). Mixed convection heat transfer of a nanofluid in a square ventilated cavity separated horizontally by a porous layer and discrete heat source. Archives of Thermodynamics, 44(2), 177–194. doi: 10.24425/ather.2023.146564
  • [8] Bai, X., Zheng, Z., Liu, C., & Nakayama, A. (2022). Achievement of wall temperature uniformity by axially graded porous materials. International Journal of Heat and Mass Transfer, 197, 123335. doi: 10.1016/j.ijheatmasstransfer.2022.123335
  • [9] Fierro, M., Mayne, G., & Toledo, M.. (2023). Second stage porous media burner for syngas enrichment. International Journal of Hydrogen Energy, 48(51), 19450–19458. doi:10.1016/j.ijhydene. 2023.02.023
  • [10] Wei, H., Huang, S., & Zhang, X.. (2022). Experimental and simulation study on heat and mass transfer characteristics in direct-contact total heat exchanger for flue gas heat recovery. Applied Thermal Engineering, 200, 117657. doi: 10.1016/j.applthermaleng.2021.117657
  • [11] Kardaś, D., Kluska, J., & Kazimierski, P. (2018). The course and effects of syngas production from beechwood and RDF in updraft reactor in the light of experimental tests and numerical calculations. Thermal Science and Engineering Progress, 8, 136–144. doi: 10.1016/j.tsep.2018.08.020
  • [12] Wardach-Święcicka, I., & Kardaś, D. (2021). Modelling thermal behaviour of a single solid particle pyrolysing in a hot gas flow. Energy, 221, 119802. doi: 10.1016/j.energy.2021.119802
  • [13] Bilicki, Z. (2001). Extended thermodynamics of irreversible processes and thermodynamics of internal parameters. In: Modern trends in thermodynamics, 49–80, IFFM PASc. Publishers, Gdańsk (in Polish).
  • [14] Jou, D., Casas-Vazquez, J., & Lebon, G. (2010). Extended irreversible thermodynamics, Springer.
  • [15] Mikielewicz, J. (1995). Modelling of thermal and flow processes (Series: Maszyny Przepływowe, vol. 17). Ossolineum, Wrocław (in Polish).
  • [16] Rahideh, H., Malekzadeh, P., & Golbahar Haghighi, M.R. (2011). Non-Fourier heat conduction analysis with temperaturedependent thermal conductivity. ISRN Mechanical Engineering,321605. doi: 10.5402/2011/321605
  • [17] Vadasz, P., & Carsky, M. (2012). Thermal resonance in hyperbolic heat conduction in porous media due to periodic Ohm’s heating. Transport in Porous Media, 95, 507–534. doi:10.1007/s11242-012-0059-0
  • [18] Chao, C.Y.H., Wang, J.H., & Kong, W. (2004). Effects of fuel properties on the combustion behaviour of different types of porous beds soaked with combustible liquid. International Journal of Heat and Mass Transfer, 47, 5201–5210. doi:10.1016/j.ijheatmasstransfer.2004.07.004
  • [19] Antaki, P.J. (1998). Importance of nonfourier heat conduction in solid-phase reactions. Combustion and Flame, 112, 329–341. doi: 10.1016/S0010-2180(97)00131-4
  • [20] Tzou, D.Y. (1997). Macro- to microscale heat transfer. Series in Chemical and Mechanical Engineering, Taylor& Francis.
  • [21] Roetzel, W., Putra, N., & Das, S.K. (2003). Experiment and analysis for non-fourier conduction in materials with a nonhomogeneous inner structure. International Journal of Thermal Science, 42, 541–552. doi: 10.1016/S1290-0729(03)00020-6
  • [22] Polesek-Karczewska, S., Kardaś, D., Wardach-Święcicka, I., Grucelski, A., & Stelmach, S. (2013). Transient one-dimensional model of coal carbonization in stagnant packed bed. Archives of Thermodynamics, 34(2) 39–51. doi: 10.2478/aoter-2013-0009
  • [23] Nomura, S., & Arima, T. (2000). Coke shrinkage and coking pressure during carbonization in a coke oven. Fuel, 79(13), 1603–1610. doi: 10.1016/S0016-2361(00)00018-1
  • [24] Polesek-Karczewska, S., Turzyński, T., Kardaś, D., & Heda, Ł. (2018). Front velocity in the combustion of blends of poultry litter with straw. Fuel Processing Technology, 176, 307–315. doi:10.1016/j.fuproc.2018.03.040
  • [25] Kardaś, D., Kluska, J., & Polesek-Karczewska, S. (2014). Introduction to problems of biomass gasification. IFFM PASc. Publishers, Gdańsk, 2014. (in Polish).
  • [26] Stelmach, S., Kardaś, D., & Polesek-Karczewska, S. (2011). Experimental verification of the non-Fourier model of heat transfer within coke oven charge. Karbo, 3, 156–165. (in Polish).
  • [27] Merrick, D. (1983). Mathematical models of the thermal decomposition of coal: Specific heats and heats of reaction. Fuel,62, 540–546. doi: 10.1016/0016-2361(83)90223-5
  • [28] Siegel, R., & Howell, J. (1992). Thermal radiation heat transfer. Taylor Francis, London.
  • [29] Ściążko, M. (2010). Models of coal classification in a thermodynamic and kinetic approaches. AGH University Press, (Rozprawy. Monografie, No. 210), Kraków (in Polish)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7994d8e5-4b0f-48f2-ad6f-a37487a7dbb1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.