PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical and Experimental Comparative Analysis of Ballistic Performance of Packages Made of Biaxial and Triaxial Kevlar 29 Fabrics

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this study is a comparative analysis of the ballistic effectiveness of packages made of biaxial and triaxial Kevlar 29 fabrics under the hitting of Parabellum 9×19 bullet. We conduct both numerical simulations using the LS-Dyna program and experimental research in a ballistic research laboratory. Based on the comparative analysis of the results from the numerical and experimental research, demonstrated differences exist in the ballistic effectiveness between the packages made of biaxial fabrics and the packages consisting of triaxial fabrics. For this purpose, the residual velocity of the bullet is analyzed in detail in terms of the maximum deformation cone, the shape of the deformation cone, and the distribution of stress for the textile ballistic packages. It is established that the packages made of triaxial fabric show a considerably smaller deformation cone compared with the packages made of biaxial fabric, a more favorable shape of the deformation cone from the perspective of ballistic trauma and distribution of stress similar to materials with isotropic properties. Poorer properties are recorded for these packages in the case of the minimum number of layers necessary for stopping the bullet, which arises from the open-work structure of the fabric.
Rocznik
Strony
203--219
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
  • Institute of Textile Architecture, Lodz University of Technology, Lodz, Poland
  • Institute of Textile Architecture, Lodz University of Technology, Lodz, Poland
Bibliografia
  • [1] Cunniff, P. M. (1992). An analysis of the system effects in woven fabrics under ballistic impact. Textile Research Journal, 62(9), 495-509.
  • [2] Chu, C. K., Chen, Y. L. (2010). Ballistic-proof effects of various woven constructions. Fibres & Textiles in Eastern Europe, 83(6), 63-67.
  • [3] Stempień, Z. (2011). Effect of velocity of the structure-dependent tension wave propagation on ballistic performance of aramid woven fabrics. Fibres & Textiles in Eastern Europe, 87(4), 74-80.
  • [4] Othman, A. R., Hassan, M. H. (2013). Effect of different construction designs of aramid fabric on the ballistic performances. Materials and Design, 44, 407-413.
  • [5] Yang, C., Tran, P., Ngo, T., Mendis, P., Humphries, W. (2014). Effect of textile architecture on energy absorption of woven fabrics subjected to ballistic impact. Applied Mechanics and Materials, 553, 757-762.
  • [6] Tran, P., Ngo, T., Yang, E.C., Mendis, P., Humphries, W. (2014). Effects of architecture on ballistic resistance of textile fabrics: Numerical study. International Journal of Damage Mechanics, 23(3), 359-376.
  • [7] Scardino, F. L., Ko, F. K. (1981). Triaxial woven fabrics: Part I: Behavior under tensile, shear, and burst deformation. Textile Research Journal, 51(2), 80-89.
  • [8] Harle, J. W. S., Leech, C. M., Adeyefa, A., Cork, C. R. (1981). Ballistic impact resistance of multi-layer textile fabrics. University of Manchester INST of Science and Technology (United Kingdom) DEPT of Textile Technology, Manchester.
  • [9] Egres, R.G., Carbajal, L A., Deakyne, C.K., (2011). Non-Orthogonal Kevlar® fabric architectures for body armor applications. In: Ballistics 2011: 26th International Symposium, Miami, September 12-16, 2011.
  • [10] Roberts, G. D., Pereira, J. M., Revilock, D. M., Binienda, W. K., Xie, M., et al. (2005). Ballistic impact of braided composites with a soft projectile. Journal of Aerospace Engineering, 18(1), 3-7.
  • [11] Yen, C. F., Caiazzo, A. A. (2001). 3D woven composite for new and innovative impact and penetration resistance systems, Technical progress report MSC, Material Sciences Corporation.
  • [12] Liu, L., Xuan, H., Chen, G., Ye. D., Hong, W. R., et al. (2012). Ballistic impact testing and analysis of triaxial braided composite fan case material. Advanced Materials Research, 535-537, 121-132.
  • [13] Haijun, X., Lulu, L., Guangtao, C., Na, Z., Yiming, F., et al. (2013). Impact response and damage evolution of triaxial braided carbon/epoxy composites. Part I: Ballistic impact testing. Textile Research Journal, 83(16), 1703-1716.
  • [14] Liu, L., Chen, W., He, M., Luo, G., Zhao, Z. (2015). Meso-scale modeling of triaxial braided textile under ballistic impact. In: 20th International Conference on Composite Materials, Copenhagen, 19-24th July 2015.
  • [15] Johnston, J. P., Pereira, J. M., Ruggeri, C. R., Roberts, G. D. (2018). High-speed infrared thermal imaging during ballistic impact of triaxially braided composites. Journal of Composite Materials, 52(25), 3549-3562.
  • [16] Steckel, M. G. (1982). Triaxial wovens’ structural resistance to tear propagation. Journal of Industrial Fabrics. 26-37.
  • [17] El Messiry, M. (2014). Investigation of puncture behaviour of flexible silk fabric composites for soft body armour. Fibres and Textiles in Eastern Europe, 22(5), 71-76.
  • [18] El Messiry, M., Eltahan, E. (2016). Stab resistance of triaxial woven fabrics for soft body armor. Journal of Industrial Textiles, 45(5), 1062-1082.
  • [19] Briscoe, B. J., Motamedi, F. (1992). The ballistic impact characteristics of aramid fabrics: The influence of interface friction. Wear, 158(1-2), 229-247.
  • [20] Lim, C. T., Shim, V. P. W., Ng, Y. H. (2003). Finite-element modeling of the ballistic impact of fabric armor. International Journal of Impact Engineering, 28(1), 13-31.
  • [21] Tan, V. B. C., Zeng, X. S., Shim, V. P. W. (2008). Characterization and constitutive modeling of aramid fibers at high strain rates. International Journal of Impact Engineering, 35(11), 1303-1313.
  • [22] Rao, M. P., Duan, Y., Keefe, M., Powers, B. M., Bogetti, T. A. (2009). Modeling the effects of yarn material properties and friction on the ballistic impact of a plain-weave fabric. Composite Structures, 89(4), 556-566.
  • [23] Marechal, C., Haugou, G., Bresson, F. (2011). Development of a numerical model of the 9 mm Parabellum FMJ bullet including jacket failure. Engineering Transactions, 59, 263-272.
  • [24] Zhang, G. M., Batra, R. C., Zheng, J. (2008). Effect of frame size, frame type, and clamping pressure on the ballistic performance of soft body armor. Composites Part B: Engineering, 39(3), 476-489.
  • [25] Wang, Y., Chen, X., Young, R., Kinloch, I. (2016). Finite element analysis of effect of inter-yarn friction on ballistic impact response of woven fabrics. Composite Structures, 135, 8-16.
  • [26] Barauskas, R., Abraitiene, A. (2007). Computational analysis of impact of a bullet against the multilayer fabrics in LS-DYNA. International Journal of Impact Engineering, 34(7), 1286-1305.
  • [27] Lee, H. P., Gong, S. W. (2010). Finite element analysis for the evaluation of protective functions of helmets against ballistic impact. Computer Methods in Biomechanics and Biomedical Engineering, 13(5), 537-550.
  • [28] NIJ Standard 0101.06. (2008). Ballistic resistance of body armor, U.S. Department of Justice Office of Justice Programs, National Institute of Justice.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7991e13d-a09a-400d-9b14-94f10e452e6b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.