Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Porównanie kinetyki degradacji korozyjnej metalicznych i jonowych materiałów ujemnych elektrod baterii typu NiMH
Języki publikacji
Abstrakty
Capacity fade and exchange current density of H2O/H2 system have been compared in conditions of long-standing cycling for powder composite electrodes based on (i) Sm0.4Zn0.6Fe2O4 ferrite spinel and (ii) LaNi4.5Co0.5 intermetallic compound. Changes of both quantities have been presented versus electrodes exposure time in strong alkaline solutions, at room temperature. Corrosion rate of semiconducting ferrite spinel is about 2.5 times lower than that of the intermetallic material. Consequently, capacity half-time is distinctly longer for the ferrite electrode. On the other hand, exchange current density of H2O/H2 system for ferrite spinel is extraordinarily low, on the level of 7 – 8 mA/g. It is suggested surface modification of the ferrite spinel material to improve its catalytic properties towards H2O/H2 redox system.
Porównano spadki pojemności właściwej i gęstości prądu wymiany układu H2O/H2 spowodowane długotrwałym cyklowaniem dwu typów proszkowych elektrod kompozytowych: (a) spinelu ferrytowego Sm0.4Zn0.6Fe2O4 i (b) związku międzymetalicznego LaNi4.5Co0.5. Zmiany obydwu wielkości przedstawiono w funkcji czasu ekspozycji elektrod w silnie alkalicznych roztworach, przy temperaturze pokojowej. Szybkość korozji materiału półprzewodnikowego, jakim jest spinel ferrytowy okazała się ok. 2,5 razy mniejsza niż związku międzymetalicznego. W konsekwencji, czas połówkowego obniżenia pojemności jest wyraźnie dłuższy dla elektrody ferrytowej. Z drugiej jednak strony, gęstość prądu wymiany układu H2O/H2 dla elektrody ferrytowej jest wyjątkowo mała, na poziomie 7 – 8 mA/g. Zasugerowano modyfikację elektrody ferrytowej dla poprawy jej właściwości katalitycznych w odniesieniu do układu redoks H2O/H2.
Wydawca
Czasopismo
Rocznik
Tom
Strony
100--105
Opis fizyczny
Bibliogr. 24 poz., tab., wykr.
Twórcy
autor
- National Higher Eng. School of Tunis (ENSIT), Lab. Mater. Process Mechanics, Tunisia
autor
- Department Phys. and Quantum Chemistry, Wroclaw Univ. Sci. Technology, Wrocław, Poland
autor
- Faculty of Science and Technology, Jan Dlugosz University (UJD) in Czestochowa, Poland
Bibliografia
- [1] Esaka T, Sakaguchi H, Kobayashi S. 2004. “Hydrogen storage in proton- conductive perovskitetype oxides and their application to nickel– hydrogen batterie. Solid State Ionics 166 (3-4) : 351-357. https:// doi.org/10.1016/j.ssi.2003.11.023
- [2] Gencer A, Surucu G, Al S. 2019. “MgTiO3Hx and CaTiO3Hx perovskite compounds for hydrogen storage applications”. International Journal of Hydrogen Energy 44 : 11930-11938. https://doi.org/10.1016/j. ijhydene.2019.03.116
- [3] Wittenauer M, Wang P, Metcalf P, Kakol Z, Honig J, Collier BF, et al. 1995. “Growth and Characterization of Single Crystals of Zinc Ferrites, Fe3‐X ZnxO4”. Inorganic Syntheses: Nonmolecular Solids. 30 : 124-132. https:// doi.org/10.1002/9780470132616.ch27
- [4] De Vidales JM, Lopez-Delgado A, Vila E, Lopez F. 1999. “The effect of the starting solution on the physico-chemical properties of zinc ferrite synthesized at low temperature”. Journal of Alloys and Compounds 287 : 276-283. https://doi.org/10.1016/S0925-8388(99)00069-9
- [5] Yu S-H, Fujino T, Yoshimura M. 2003. “Hydrothermal synthesis of Zn- Fe2O4 ultrafine particles with high magnetization”. Journal of Magnetism and Magnetic Materials 256 : 420-424. https://doi.org/10.1016/ S0304-8853(02)00977-0
- [6] Gajbhiye N, Bhattacharya U, Darshane V. 1995. “Thermal decomposition of zinc-iron citrate precursor”. Thermochimica Acta 264 : 219-230. https://doi.org/10.1016/0040-6031(95)02331-U
- [7] Hu C, Guo S, Lu G, Fu Y, Liu J, Wei H, et al. 2014. “Carbon coating and Zn2+ doping of magnetite nanorods for enhanced electrochemical energy storage”. Electrochimica Acta. 148 118-126. https://doi. org/10.1016/j.electacta.2014.10.014
- [8] Kumar PR, Jung YH, Bharathi KK, Lim CH, Kim DK. “High capacity and low cost spinel Fe3O4 for the Na-ion battery negative electrode materials”. Electrochimica Acta 146 : 503-510. https://doi.org/10.1016/j. electacta.2014.09.081
- [9] Zayani W, Azizi S, El-Nasser KS, Ali IO, Mathlouthi H. 2018. “Structural and electrochemical characterization of new co-doped spinel ferrite nanomaterial used as negative electrode in Ni/MH battery”. 9th International Renewable Energy Congress (IREC): IEEE, 2018 : 1-5. https:// doi.org/10.1109/IREC.2018.8362576
- [10] Zayani W, Azizi S, El-Nasser KS, Belgacem YB, Ali IO, Fenineche N, Mathlouthi H. 2019. “New nanoparticles of (Sm, Zn)-codoped spinel ferrite as negative electrode in Ni/MH batteries with long-term and enhanced electrochemical performance”. International Journal of Hydrogen Energy. 44 : 11303-11310. https://doi.org/10.1016/j.ijhydene.2018.10.220
- [11] Zayani W, Azizi S, El‐Nasser KS, Othman Ali I, Moliere M, Fenineche N, Mathlouthi H, Lamloumi J. 2020. ≪Electrochemical behavior of a spinel zinc ferrite alloy obtained by a simple solgel route for Ni‐MH battery applications≫. International Journal of Energy Research 45 (4) 5235- 5247. https://doi.org/10.1002/er.6140
- [12] Cottis R. 2010. Shreir’s corrosion. Elsevier Amsterdam, The Netherlands:; Chapter 2.01.
- [13] Revie RW. 2000. Uhlig’s Corrosion Handbook, 2nd edition, “Anti-Corrosion Methods and Materials”. Chapter 8. https://doi.org/10.1108/ acmm.2000.12847dae.001
- [14] Bala H, Dymek M. 2017. “Determination of corrosion rate of porous, liquid permeable materials on the example of hydride powder composite”. Ochrona przed Korozją 60 : 79-83. http://dx.doi. org/10.15199%2F40.2017.4.1
- [15] Adzic GD, Johnson JR, Reilly JJ, McBreen J, Mukerjee S, Sridhar Kumar MP, Zhang W, Srinivasan S. 1995. “Cerium content and cycle life of multicomponent AB5 hydride electrodes”. Journal of The Electrochemical Society 142 : 3429-3433.
- [16] Ye H. Zhang H, Cheng Z, Huang TS. 2000. “Effect of Ni content on the structure, thermodynamic and electrochemical properties of the non-stoichiometric hydrogen storage alloys”. Journal of Alloys and Compounds. 308 : 163-171.
- [17] Durairajan A, Haran BS, Popov BN, White RE. 1999. “Cycle life and utilization studies on cobalt microencapsulated AB5 type metal hydride”. Journal of Power Sources 83 :114-120.
- [18] Bala H, Kukuła I, Giza K, Marciniak B, Rożycka-Sokołowska E, Drulis H. 2012. „Evaluation of electrochemical hydrogenation and corrosion behavior of LaNi5-based materials using galvanostatic charge/discharge measurements”. International Journal of Hydrogen Energy 37 : 16817- 16822. https://doi.org/10.1016/j.ijhydene.2012.07.126
- [19] Atkins P., J.de Paula. 2006. Atkins’ Physical Chemistry, Eight Edition, Chapter 22.2, New York : W.H. Freeman and Company.
- [20] Dymek M, Bala H. 2016. “Inhibition of LaNi5 electrode decay in alkaline medium by electroless encapsulation of active powder particles”. Journal of Solid State Electrochemistry 20 : 2001-2007.
- [21] Bala H, Dymek M. 2015. “Corrosion degradation of powder composite hydride electrodes in conditions of long-lasting cycling”. Materials Chemistry and Physics 167 : 265-270. https://doi.org/10.1016/j. matchemphys.2015.10.042
- [22] Testing ASf, Materials. ASTM D792: Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. American Standard Methods; 2008.
- [23] Naragino H, Yoshinaga K, Nakahara A, Tanaka S, Honda K. 2013. “Enhancement of electrical conductivity and electrochemical activity of hydrogenated amorphous carbon by incorporating boron atoms”. Journal of Physics: Conf. Ser. 441 : 12-42. https://doi.org/10.1088/1742- 6596/441/1/012042
- [24] Dymek M, Gega J, Pawlik P, Bala H. 2020. “Preferential alkaline leaching of amphoteric elements from super-stoichiometric hydrogen storage alloy”. International Journal of Hydrogen Energy 45 : 13387-13397. https://doi.org/10.1016/j.ijhydene.2020.03.041
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7991573f-5e61-45d1-a4a3-97ed1aa1c419