Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Problemy monitorowania elementów krytycznych rusztowania
Języki publikacji
Abstrakty
Scaffolds are temporary structures that include anchors, elements, and platforms that are used during the construction of steel or concrete structures to support equipment or workers at height. Since these structures have aimed to guarantee safety and support workers at heights, the stability of scaffold systems is of significant importance. These systems have some disadvantages. For example, they are sensitive to vibrations. This feature reduces their stability under service-, cyclic-, or earthquake loadings. Furthermore, the vibrating nature of scaffolds can impose additional axial loads and consequently additional moment loads on the scaffold columns and decrease the safety of workers and increase the accidents of use of them. In this paper, a review of some research has been performed that aimed to solve this problem and improve the stability of scaffolds. These articles have investigated the behaviour of anchors and joints and the influence of imperfections and inaccuracies on scaffolds. A summary of research has been presented that has proposed new methods for predicting the behaviour, damage, and collapse of scaffolds using some structural health monitoring (SHM) methods. Finally, the research gaps and limitations of previous studies have been investigated, with a focus on monitoring and solving the problems of the scaffolds and critical elements so that these problems can be solved and evaluated in future studies.
Rusztowania to konstrukcje tymczasowe. Składają się ze stojaków, prętów stężeń, podestów i zakotwienia. Najczęściej są one wykorzystywane na etapie budowy czy remontu konstrukcji budowlanych i służą do podtrzymywania sprzętu i pracowników na wysokości. Ponieważ konstrukcje te mają na celu zagwarantowanie bezpieczeństwa ludzi pracujących na wysokości to olbrzymie znaczenie ma ich stateczność. Rusztowania mają różne wady np. są wrażliwe na wibracje. Ta cecha zmniejsza ich stabilność pod działaniem obciążeń zmiennych, cyklicznych lub trzęsieniem ziemi. Co więcej, drgania rusztowań mogą powodować dodatkowe siły osiowe i momenty zginające w słupach rusztowania, zmniejszając bezpieczeństwo pracowników i zwiększając liczbę wypadków związanych z ich użytkowaniem. W niniejszym artykule dokonano przeglądu badań mających na celu rozwiązanie tego problemu i poprawę stabilności rusztowań. Analizowana w pracy literatura dotyczyła zachowania kotew i złączy oraz wpływu imperfekcji geometrycznych i niedokładności montażowych na bezpieczeństwo rusztowań. W artykule przedstawiono podsumowanie badań, w których zaproponowano nowe metody przewidywania zachowania, uszkodzeń i katastrof rusztowań przy użyciu metod monitorowania stanu konstrukcji (SHM). Wskazano luki badawcze i ograniczenia poprzednich badań. Skoncentrowano się na monitorowaniu i rozwiązywaniu problemów rusztowań i ich elementów krytycznych, tak aby mogły być one rozwiązywane i oceniane w przyszłych badaniach.
Czasopismo
Rocznik
Tom
Strony
233--254
Opis fizyczny
Bibliogr. 85 poz., il., tab.
Twórcy
autor
- student, Wrocław University of Science and Technology, Faculty of Civil Engineering, Wrocław, Poland
autor
- Wrocław University of Science and Technology, Faculty of Civil Engineering, Wrocław, Poland
autor
- Lublin University of Technology, Department of Structural Mechanics, Lublin, Poland
Bibliografia
- [1] H. Zhang, K.J. Rasmussen, and B.R. Ellingwood, “Reliability assessment of steel scaffold shoring structures for concrete formwork”, Engineering Structures, vol. 36, pp. 81-89, 2012, doi: 10.1016/j.engstruct.2011.11.027.
- [2] E. Błazik-Borowa, A. Borowa, B. Kawecki, M. Kotowicz, and A. Robak, “Geodesic inventory of scaffolding geometry”, Engineering Structures, vol. 196, art. no. 109360, 2019, doi: 10.1016/j.engstruct.2019.109360.
- [3] E.A. Amede, E.K. Hailemariam, L.M. Hailemariam, and D.A. Nuramo, “Identification of factors on the possibility of bamboo as a scaffolding and a formwork material in Ethiopia”, Cogent Engineering, vol. 9, no. 1, art. no. 2051692, 2022, doi: 10.1080/23311916.2022.2051692.
- [4] M.O. Sanni-Anibire, B.A. Salami, and N. Muili, “A framework for the safe use of bamboo scaffolding in the Nigerian construction industry”, Safety Science, vol. 151, pp. 105725, 2022, doi: 10.1016/j.ssci.2022.105725.
- [5] EN 1991-1-6:2005 Eurocode 1 – Actions on structures part 1-6: general actions actions during execution. 2005.
- [6] EN 74-3:2007 Couplers, spigot pins and baseplates for use in falsework and scaffolds – Part 3: Plain base plates and spigot pins – requirements and test procedures. 2007.
- [7] EN 74-1:2022 Couplers, spigot pins and baseplates for use in falsework and scaffolds – Part 1: Couplers for tubes – requirements and test procedures. 2022.
- [8] EN 74-2:2022 Couplers, spigot pins and baseplates for use in falsework and scaffolds – Part 2: Special couplers – requirements and test procedures. 2022.
- [9] EN 1004-1:2020 Mobile access and working towers made of prefabricated elements-materials, dimensions, design loads, safety and performance requirements. 2020.
- [10] EN 12811-1:2003 Temporary works equipment – Part 1: Scaffolds – performance requirements and general design. 2003.
- [11] EN 12811-2:2004 Temporary works equipment – Part 2: Information on materials. 2004.
- [12] EN 12811-3:2002 Temporary works equipment – Part 3: Load testing. 2002.
- [13] EN 12811-4:2013 Temporary works equipment – Part 4: Protection fans for scaffolds – performance requirements and product design. 2013.
- [14] EN 12813:2004 Temporary works equipment – load bearing towers of prefabricated components – particular methods of structural design. 2004.
- [15] EN 12812:2008 Falsework – performance requirement and general design. 2008.
- [16] EN 12810-2:2003 Façade scaffolds made of prefabricated components – Part 2: Particular methods of structural design. 2003.
- [17] EN 12810-1:2003 Façade scaffolds made of prefabricated components – Part 1: Products specifications. 2003.
- [18] H. Berkers, Specification for Structural Steel Buildings. American Institute of Steel Construction, 2017.
- [19] T. Nowobilski and B. Hoła, “Methodology based on causes of accidents for forcasting the effects of falls from scaffoldings using the construction industry in Poland as an example”, Safety Science, vol. 157, pp. 105945, 2023, doi: 10.1016/j.ssci.2022.105945.
- [20] M. Pieńko, A. Robak, E. Błazik-Borowa, and J. Szer, “Safety conditions analysis of scaffolding on construction sites”, International Journal of Civil and Environmental Engineering, vol. 12, pp. 72-77, 2018.
- [21] E. Błazik-Borowa and J. Bęc, “Influence of dynamic properties on scaffoldings safety”, Archives of Civil and Mechanical Engineering, vol. 21, art. no. 144, 2021, doi: 10.1007/s43452-021-00295-3.
- [22] B. Hoła, T. Nowobilski, Z. Woźniak, and M. Białko, “Qualitative and quantitative analysis of the causes of occupational accidents related to the use of construction scaffoldings”, Applied Sciences, vol. 12, no. 11, art. no. 5514, 2022, doi: 10.3390/app12115514.
- [23] T. Nowobilski and B. Hoła, “Estimating the probability of accidents on building scaffoldings”, Safety Science, vol. 152, art. no. 105777, 2022, doi: 10.1016/j.ssci.2022.105777.
- [24] T. Nowobilski and B. Hoła, “The qualitative and quantitative structure of the causes of occupational accidents on construction scaffolding”, Archives of Civil Engineering, vol. 65, no. 2, pp. 121-131, 2019, doi: 10.2478/ace-2019-0023.
- [25] F. Rodrigues, J.S. Baptista, and D. Pinto, “BIM approach in construction safety-a case study on preventing falls from height”, Buildings, vol. 12, no. 1, art. no. 73, 2022, doi: 10.3390/buildings12010073.
- [26] F. Rodrigues, J.S. Baptista, and D. Pinto, “BIM approach in construction safety-a case study”, 2021. Available: https://www.preprints.org/manuscript/202111.0053/v1.
- [27] M. Szóstak, B. Hoła, and P. Bogusławski, “Identification of accident scenarios involving scaffolding”, Automation in Construction, vol. 126, art. no. 103690, 2021, doi: 10.1016/j.autcon.2021.103690.
- [28] Q. Wang, “Automatic checks from 3D point cloud data for safety regulation compliance for scaffold work platforms”, Automation in Construction, vol. 104, pp. 38-51, 2019, doi: 10.1016/j.autcon.2019.04.008.
- [29] I. Szer, T. Lipecki, J. Szer, and K. Czarnocki, “Using meteorological data to estimate heat stress of construction workers on scaffolds for improved safety standards”, Automation in Construction, vol. 134, art. no. 104079, 2021, doi: 10.1016/j.autcon.2021.104079.
- [30] A. Robak, M. Pieńko, E. Błazik-Borowa, J. Bęc, and I. Szer, “Analysis of exploitation damages of the frame scaffolding”, MATEC Web of Conferences, EDP Sciences, vol. 284, art. no. 08008, 2019, doi: 10.1051/matecconf/201928408008.
- [31] I. Szer, J. Szer, M. Kaszubska, J. Miszczak, B. Hoła, E. Błazik-Borowa, and M. Jabłoński, “Influence of the seasons on construction site accidents”, Archives of Civil Engineering, vol. 67, no. 3, pp. 489-504, 2021, doi: 10.24425/ace.2021.138067.
- [32] I. Szer and J. Szer, “Analysis of lighting on exterior scaffoldings at different times of day”, Archives of Civil Engineering, vol. 68, no. 3, pp. 139-154, 2022, doi: 10.24425/ace.2022.141878.
- [33] J.L. Peng, S.H. Wang, C.S. Wang, and J.P. Yang, “Stability study on scaffolds with inclined surfaces and extended jack bases in construction”, Advanced Steel Construction, vol. 17, no. 1, pp. 73-83, 2021, doi: 10.18057/IJASC.2021.17.1.9.
- [34] S. Hong, J. Yoon, Y. Ham, B. Lee, and H. Kim, “Monitoring safety behaviors of scaffolding workers using Gramian angular field convolution neural network based on IMU sensing data”, Automation in Construction, vol. 148, art. no. 104748, 2023, doi: 10.1016/j.autcon.2023.104748.
- [35] R. Lacalle, S. Cicero, D. Ferreno, and J.A. Alvarez, “Failure analysis of a bolt in a scaffolding system”, Engineering Failure Analysis, vol. 15, no. 3, pp. 237-246, 2008, doi: 10.1016/j.engfailanal.2007.06.005.
- [36] E. Błazik-Borowa, A. Robak, M. Pieńko, and D. Czepiżak, “The measurement of axial forces in scaffolding standards”, Measurement, vol. 223, art. no. 113770, 2023, doi: 10.1016/j.measurement.2023.113770.
- [37] S. Jia, F. Zhou, and Z. Chen, “Analysis on the mechanical performance of the joints of the wheel-coupler type formwork support”, E3S Web of Conferences, EDP Sciences, vol. 261, art. no. 02070, 2021, doi: 10.1051/e3sconf/202126102070.
- [38] J. Ilcik, V. Arora, and J. Dolejs, “Design of new scaffold anchor based on the updated finite element model”, Engineering Structures, vol. 118, pp. 334-343, 2016, doi: 10.1016/j.engstruct.2016.03.064.
- [39] P. Cyniak, E. Błazik-Borowa, J. Szer, T. Lipecki, and I. Szer, “The choice of boundary conditions and mesh for scaffolding FEM model on the basis of natural vibrations measurements”, in AIP Conference Proceedings, vol. 1922. AIP Publishing LLC, 2018, art. no. 150002, doi: 10.1063/1.5019155.
- [40] T. Chandrangsu and K.J. Rasmussen, “Investigation of geometric imperfections and joint stiffness of support scaffold systems”, Journal of Constructional Steel Research, vol. 67, no. 4, pp. 576-584, 2011, doi: 10.1016/j.jcsr.2010.12.004.
- [41] Y. Kai, Z. Yiqiang, and L. Gang, “The influence of semi-rigid joint values on the ultimate bearing capacity of tall formwork support systems", Civil Construction and Environmental Engineering, vol. 2, pp. 130-133, 2015.
- [42] H. Liu, L. Jia, S. Wen, Q. Liu, G. Wang, and Z. Chen, “Experimental and theoretical studies on the stability of steel tube-coupler scaffolds with different connection joints”, Engineering Structures, vol. 106, pp. 80-95, 2016 doi: 10.1016/j.engstruct.2015.10.015.
- [43] L. Hongbo, Z. Yuan, C. Zhiua, and L. Qun, “Structural performance and design method of new mortise-tenon full steel-tube scaffold”, Advanced Steel Construction, vol. 14, no. 2, pp. 291-07, 2018.
- [44] C. Liu, L. He, Z. Wu, and J. Yuan, “Experimental study on joint stiffness with vision-based system and geometric imperfections of temporary member structure”, Journal of Civil Engineering and Management, vol. 24, no. 1, pp. 43-52, 2018, doi: 10.3846/jcem.2018.299.
- [45] J.F. Dong, H. Q. Liu, and Z. W. Zhao, “Buckling behavior of a wheel coupler high-formwork support system based on semi-rigid connection joints”, Advanced Steel Construction, vol. 18, no. 1, pp. 425-435, 2022, doi: 10.18057/IJASC.2022.18.1.1.
- [46] X. Li, R.C.Y. Lam, and L.C.H. Lam, “IoT enabled monitoring scheme for scaffold-frame systems for transfer plate construction”, in Proceedings International Conference on Smart Transportation and City Engineering (STCE 2022), vol. 12460. SPIE, 2022, art. no. 12460, doi: 10.1117/12.2657920.
- [47] G.J. Dou, Y. Kang, and J.T. Zi, “Investigation and application analysis of socket type wheel-buckle scaffold”, Building Construction, vol. 40, pp. 1957-1958, 2018.
- [48] D. Chen, Y. Wang, and X. He, “Fastener scaffold stability analysis and experimental research under non-uniform distributed load”, Open Civil Engineering Journal, vol. 11, pp. 873-886, 2017, doi: 10.2174/1874149501711010873.
- [49] F.K. Zeng and X.B. Liu, “Mechanical behavior experiment research on the temporary support structure in building construction, in advanced materials research”, Advanced Materials Research, vol. 163-167, pp. 1143-1146, 2010, doi: 10.4028/www.scientific.net/AMR.163-167.1143.
- [50] E. Błazik-Borowa, P. Jamińska-Gadomska, and M. Pieńko, “Influence of foundation quality on the stress in the elements of steel façade scaffolding”, Buildings, vol. 10, no. 7, art. no. 130, 2020, doi: 10.3390/buildings10070130.
- [51] A.A. Markou and A.M. Kaynia, “Nonlinear soil-pile interaction for offshore wind turbines”, Wind Energy, vol. 21, no. 7, pp. 558-574, 2018, doi: 10.1002/we.2178.
- [52] K. Lenar, S. Gennady, and S. Marat. “Efforts redistribution in statically indeterminate bar systems based on scaffolding by force limiter”, IOP Conference Series: Materials Science and Engineering, vol. 890, art. no. 012064, 2022, doi: 10.1088/1757-899X/890/1/012064.
- [53] E. Błazik-Borowa, J. Szer, A. Borowa, A. Robak, and M. Pieńko, “Modelling of load-displacement curves obtained from scaffold components tests”, Bulletin of the Polish Academy of Sciences, vol. 67, no. 2, pp. 317-327, 2019, doi: 10.24425/bpas.2019.128602.
- [54] Z. Lu and G. Chao, “Bearing capacity of fastener steel tube full hall scaffolds”, Magazine of Civil Engineering, vol. 3, pp. 35-45, 2019, doi: 10.18720/MCE.87.3.
- [55] C. Liu, L. He, Z. Wu, and J. Yuan, “Experimental and numerical study on lateral stability of temporary structures”, Archives of Civil and Mechanical Engineering, vol. 18, no. 4, pp. 1478-1490, 2018, doi: 10.1016/j.acme.2018.06.002.
- [56] K.W. Ding and X. Yang, “Research review on the temporary bracing system of prefabricated structure”, Applied Mechanics and Materials, vol. 193, pp. 1261-1264, 2012, doi: 10.4028/www.scientific.net/AMM.193-194.1261.
- [57] T. Lipecki, P. Jamińska-Gadomska, and E. Błazik-Borowa, “Dynamic wind action on façade scaffoldings”, in AIP Conference Proceedings, vol. 1922, no. 1. AIP Publishing LLC, 2018, pp. 110001, doi: 10.1063/1.5019104.
- [58] T. Lipecki, P. Jamińska-Gadomska, J. Bęc, and E. Błazik-Borowa, “Façade scaffolding behaviour under wind action”, Archives of Civil and Mechanical Engineering, vol. 20, pp. 1-15, 2020, doi: 10.1007/s43452-020-00034-0.
- [59] T. Lipecki, P. Jamińska-Gadomska, and E. Błazik-Borowa, “Wind load on façade scaffolding without protective cover-Eurocode and in-situ measurement approaches”, Journal of Building Engineering, vol. 42, art. no. 102516, 2021, doi: 10.1016/j.jobe.2021.102516.
- [60] J. Bęc, E. Błazik-Borowa, P. Jamińska-Gadomska, and T. Lipecki, “Vibrational characteristics of façade frame scaffoldings”, Archives of Civil Engineering, vol. 66, no. 3, pp. 467-484, 2020, doi: 10.24425/ace.2020.134408.
- [61] J. Bęc and E. Błazik-Borowa, “Dynamic properties of façade frame scaffoldings”, MATEC Web of Conferences, vol. 285, art. no. 00001, 2019, doi: 10.1051/matecconf/201928500001.
- [62] E. Błazik-Borowa, M. Pieńko, I. Szer, B. Hoła, and K. Czarnocki, “Probability distribution functions for service loads of frame scaffoldings”, Bulletin of the Polish Academy of Sciences, vol. 69, no. 2, 2021, doi: 10.24425/bpasts.2021.136734.
- [63] J. Bęc, E. Błazik-Borowa, and J. Szer, “Analysis of scaffolding harmonic excitation”, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 71, no. 1, art. no. e144577, 2023, doi: 10.24425/bpasts.2023.144577.
- [64] T. Chandrangsu and K.J.R. Rasmussen, “Investigation of geometric imperfections of support scaffold systems”, Journal of Constructional Steel Research, vol. 67, no. 4, pp. 576-584, 2011, doi: 10.1016/j.jcsr.2010.12.004.
- [65] S.L. Chan, H.Y. Huang, and L.X. Fang, “Advanced analysis of imperfect portal frames with semirigid base connections”, Journal of Engineering Mechanics, vol. 131, no. 6, pp. 633-640, 2005, doi: 10.1061/(ASCE)0733-9399(2005)131:6(633).
- [66] C. Crosti, F. Bontempi, and S. Arangio, “The collapse of a temporary structure”, International Journal of Forensic Engineering, vol. 3, no. 1-2, pp. 18-29, 2016, doi: 10.1504/IJFE.2016.075994.
- [67] C.W. Baek, D.Y. Lee, and C.S. Park, “Blockchain based framework for verifying the adequacy of scaffolding installation", in ISARC Proceedings of the International Symposium on Automation and Robotics in Construction, IAARC Publications. 2020, pp. 425-432, doi: 10.22260/ISARC2020/0060.
- [68] E. Błazik-Borowa and J. Gontarz, “The influence of the dimension and configuration of geometric imperfections on the static strength of a typical façade scaffolding”, Archives of Civil and Mechanical Engineering, vol. 16, no. 3, pp. 269-281, 2016, doi: 10.1016/j.acme.2015.11.003.
- [69] Ł. Borowski, M. Pieńko, and P. Wielgos, “Evaluation of inventory surveying of façade scaffolding conducted during ORKWIZ project", in 2017 Baltic Geodetic Congress (BGC Geomatics). IEEE, 2017, pp. 189-192, doi: 10.1109/BGC.Geomatics.2017.31.
- [70] S.K. Baduge, et al., “Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications”, Automation in Construction, vol. 141, art. no. 104440, 2022, doi: 10.1016/j.autcon.2022.104440.
- [71] A.T.G. Tapeh and M.Z. Naser, “Artificial Intelligence, Machine Learning, and Deep Learning in Structural Engineering: A Scientometrics Review of Trends and Best Practices”, Archives of Computational Methods in Engineering, vol. 30, no. 1, pp. 115-159, 2023, doi: 10.1007/s11831-022-09793-w.
- [72] M.Naser, “An engineer’s guide to explainable artificial intelligence and interpretable machine learning: navigating causality, forced goodness, and the false perception of inference”, Automation in Construction, vol. 129, art. no. 103821, 2021, doi: 10.1016/j.autcon.2021.103821.
- [73] J. Kim, N. Koo, and H. Kim, “Automated checking of scaffold safety regulations using multi-class 3D segmentation”, in ISARC Proceedings of the International Symposium on Automation and Robotics in Construction. IAARC Publications, 2022, pp. 115-119.
- [74] E. Błazik-Borowa, R. Geryło, and P. Wielgos, “The probability of a scaffolding failure on a construction site”, Engineering Failure Analysis, vol. 131, art. no. 105864, 2022, doi: 10.1016/j.engfailanal.2021.105864.
- [75] L. Zhen-yu, H. Jia-hao, C. Hao-long, and D. Yi-chuan, “A computer vision based structural damage identification method for temporary structure during construction”, Journal of Graphics, vol. 43, art. no. 608, 2022.
- [76] W. Ying, et al., “Automatic scaffolding workface assessment for activity analysis through machine learning”, Applied Sciences, vol. 11, no. 9, art. no. 4143, 2021, doi: 10.3390/app11094143.
- [77] S. Sakhakarmi, J. Park, and C. Cho, “Enhanced machine learning classification accuracy for scaffolding safety using increased features", Journal of Construction Engineering and Management, vol. 145, no. 2, 2019, doi: 10.1061/(ASCE)CO.1943-7862.0001601.
- [78] F. Wang and G. Song, “Looseness detection in cup-lock scaffolds using percussion-based method”, Automation in Construction, vol. 118, art. no. 103266, 2020, doi: 10.1016/j.autcon.2020.103266.
- [79] M. Mishra, P. B. Lourenço, and G.V. Ramana, “Structural health monitoring of civil engineering structures by using the internet of things: A review”, Journal of Building Engineering, vol. 48, art. no. 103954, 2022, doi: 10.1016/j.jobe.2021.103954.
- [80] S.S. Bangaru, C. Wang, S.A. Busam, and F. Aghazadeh, “ANN-based automated scaffold builder activity recognition through wearable EMG and IMU sensors”, Automation in Construction, vol. 126, art. no. 103653, 2021, doi: 10.1016/j.autcon.2021.103653.
- [81] J. Kim, D. Chung, Y. Kim, and H. Kim, “Deep learning-based 3D reconstruction of scaffolds using a robot dog”, Automation in Construction, vol. 134, art. no. 104092, 2022, doi: 10.1016/j.autcon.2021.104092.
- [82] Y. Tian, C. Chen, K. Sagoe-Crentsil, J. Zhang, and W. Duan, “Intelligent robotic systems for structural health monitoring: Applications and future trends”, Automation in Construction, vol. 139, art. no. 104273, 2022, doi: 10.1016/j.autcon.2022.104273.
- [83] K.S. Song, S. Kang, D.G. Lee, Y.H. Nho, J.S. Seo, and D.S. Kwon, “A motion similarity measurement method of two mobile devices for safety hook fastening state recognition”, IEEE Access, vol. 10, pp. 8804-8815, 2022, doi: 10.1109/ACCESS.2022.3144144.
- [84] L. Rui, Z. Zhixiang, C. Xi, M. Wei, and M. Junhao, “3D deformation monitoring method for temporary structures based on multi-thread LiDAR cloud”, Measurement, vol. 200, art. no. 111545, 2022, doi: 10.1016/j.measurement.2022.111545.
- [85] Z.Y. Liang, H.L. Chen, J.H. Hua, and Y.C. Deng, “A Eulerian video magnification based structural damage identification method for scaffold”, in International Symposium on Advancement of Construction Management and Real Estate. Springer, 2022, pp. 1122-1132, doi: 10.1007/978-981-19-5256-2_88.
Identyfikator YADDA
bwmeta1.element.baztech-798ae1d8-4405-44b3-b2ec-fd234b5ecbfe