PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of cyclic frozen and defrost on mechanical properties of polytetrafluoroethylene (PTFE)-coated woven fabrics

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ cyklicznego zamrażania i rozmrażania na właściwości mechaniczne tkanin technicznych powlekanych politetrafluoroetylenem (PTFE)
Języki publikacji
EN
Abstrakty
EN
This research aims to determine the influence of the cyclic process of freezing and defrosting on the mechanical properties of the chosen glass fibres and PTFE-coated woven fabrics. The specimens were subjected to freezing at about -20°C for 4 h and thawing by full immersion into the water at about +20°C for 4 h. The fabric samples after 25 and 50 frozen cycles were air-dried at room temperature for one week and then subjected to uniaxial tensile tests. The same tests have been performed on a reference group of specimens, which were not exposed to temperature change. The authors determined the tensile strength, and longitudinal stiffnesses resulting from performed tests. Although the investigated coated woven fabrics expressed a reduction in the tensile strength in water soaking conditions, the performed frozen cycles don’t show a significant decrease in strength under uniaxial tensile tests.
PL
Artykuł opisuje badania tkanin technicznych wykonanych z włókana szklanego i powlekanych politertafluroetylenem (PTFE) (ang. PTFE-coated woven fabric), które mają na celu określenie wpływu cyklicznych procesów zamrażania i rozmrażania na właściwości mechaniczne wybranych tkanin Próbki tkanin technicznych zostały poddane zamrażaniu w temperaturze około -20°C przez 4 godziny i rozmrażaniu przez całkowite zanurzenie w wodzie w temperaturze około +20°C przez 4 godziny. Próbki tkanin technicznych po 25 i 50 cyklach zamrażania suszono na powietrzu w temperaturze pokojowej przez tydzień, a następnie poddano próbom jednoosiowego rozciągania. Na podstawie testów jednoosiowego rozciągania określono wytrzymałość na rozciąganie i moduły sztywności. Pomimo, iż w badanych tkaninach powlekanych następuje spadek wytrzymałości na rozciąganie w warunkach ich namoczenia w wodzie, to wykonane cykle zamrażania nie wykazują znacznego spadku wytrzymałości w próbach jednoosiowego rozciągania.
Rocznik
Strony
91--104
Opis fizyczny
Bibliogr. 41 poz., il., tab.
Twórcy
  • Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Gdańsk, Poland
  • Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Gdańsk, Poland
Bibliografia
  • [1] J. Llorens, Ed., Fabric Structures in Architecture. Sawston: Woodhead Publishing, 2015.
  • [2] K. Gerlic, Membrane canopies in Poland - Freedom of forming (Zadaszenia membranowe w Polsce - swoboda kształtowania). Gliwice, Poland: Wydawnictwo Politechniki Ślaskiej, 2018. https://repolis.bg.polsl.pl/dlibra/publication/53521/edition/48922?language=en.
  • [3] S. Pałkowski, A. Zagubień, and S. Kobielak, "Konstrukcje budowlane dużych rozpiętości", in Budownictwo ogólne. Tom 4. Konstrukcje budynków. Warsaw, Poland: Arkady, 2010, pp. 30-163.
  • [4] K. Gerlic, “Projektowanie zadaszeń membranowych na przykładzie parkingu rowerowego w Jaworznie”, Builder, vol. 288, no. 7, pp. 12-15, 2021, DOI: 10.5604/01.3001.0014.9123.
  • [5] Y. Zhang, Q. Zhang, and H. Lv, “Mechanical properties of polyvinylchloride-coated fabrics processed with Precontraint®technology”, Journal of Reinforced Plastics and Composites, vol. 31, no. 23, pp. 1670-1684, 2012, DOI: 10.1177/0731684412459898.
  • [6] A. Ambroziak, “Characterization study on mechanical properties of polyester coated fabric”, Archives of Civil Engineering, vol. 66, no. 2, pp. 105-118, 2020, DOI: 10.24425/ace.2020.131799.
  • [7] A. Ambroziak and P. Kłosowski, “Sopot Forest Opera - history and future”, in XIII Lightweight Structures in Civil Engineering - Contemporary Problems. Warsaw, Poland, 2007, pp. 102-105, DOI: 10.13140/2.1.2235.6801.
  • [8] J. Filipkowski and J. Jacoszek, “Mechanical properties of covered textile material”, Archives of Civil Engineering, vol. 34, no. 2, pp. 243-259, 1988.
  • [9] P. Kłosowski and A. Zagubień, “Analysis of Material Properties of Technical Fabric for Hanging Roofs and Pneumatic Shells”, Archives of Civil Engineering, vol. 49, no. 3, pp. 277-294, 2003.
  • [10] B. Bridgens and P. Gosling, “Direct stress-strain representation for coated woven fabrics”, Computers & Structures, vol. 82, no. 23-26, pp. 1913-1927, 2004, DOI: 10.1016/j.compstruc.2003.07.005.
  • [11] A. Ambroziak and P. Kłosowski, “Influence of Water-Induced Degradation of Polytetrafluoroethylene (PTFE)-Coated Woven Fabrics Mechanical Properties”, Materials (Basel), vol. 15, no. 1, art. no. 1, 2022, DOI: 10.3390/ma15010001.
  • [12] H. Bao, M. Wu, and X. Zhang, “Study on tearing tests and the determination of fracture toughness of PVC-coated fabric”, Journal of Industrial Textiles, vol. 51, no. 6, pp. 977-1006, 2022, DOI: 10.1177/1528083721993943.
  • [13] B. Zhao, J. Hu, W. Chen, J. Chen, and Z. Jing, “A nonlinear uniaxial stress-strain constitutive model for viscoelastic membrane materials”, Polymer Testing, vol. 90, art. no. 106633, 2020, DOI: 10.1016/j.polymertesting.2020.106633.
  • [14] J. Chen, Y. Xia, B. Zhao, W. Chen, M. Wang, and F. Luo, “Nonlinear characteristics and a new fractional constitutive model for warp-knitted NCF composites under normal loading conditions”, Polymer Testing, vol. 107, art. no. 107464, 2022, DOI: 10.1016/j.polymertesting.2021.107464.
  • [15] D. Chen, J. J. Xiong, J. B. Bai, and C. H. Dong, “Simplified analytical model to predict nonlinear mechanical responses of flexible composite sheet subjected to out-of-plane loading”, Mechanics of Advanced Materials and Structures, pp. 1-14, 2022, DOI: 10.1080/15376494.2022.2042629.
  • [16] R. Zadekhast and A. Asayesh, “Analysis of the tensile creep performance of warp-knitted fabrics in technical applications in view of fabric structure”, The Journal of The Textile Institute, pp. 1-7, 2022, DOI: 10.1080/00405000.2022.2029276.
  • [17] J. Xu, Y. Zhang, M. Wu, X. Li, and L. Zhang, “Damping characteristics of the architectural coated fabric and its influence on the vibration response of membrane structures”, Composite Structures, vol. 285, art no. 115207, 2022, DOI: 10.1016/j.compstruct.2022.115207.
  • [18] N. Freiherrova and M. Krejsa, “Approaches of biaxial testing of membrane materials”, AIP Conference Proceedings, vol. 2425, art no. 040015, 2022, DOI: 10.1063/5.0082045.
  • [19] J. Xu, Y. Zhang, J. Song, Y. Zhao, and L. Zhang, “Quasi-static puncture resistance behaviors of architectural coated fabric”, Composite Structures, vol. 273, art. no. 114307, 2021, DOI: 10.1016/j.compstruct.2021.114307.
  • [20] D.T. Karádi, A.A. Sipos, M. Halász, V. Hliva, and D. Hegyi, “An elastic phenomenological material law of technical textile with a nonlinear shear behaviour”, Journal of Reinforced Plastics and Composites, vol. 40, no. 19-20, pp. 759-769, 2021, DOI: 10.1177/07316844211005842.
  • [21] V. Saceviciene, M. Juciene, V. Dobilaite, V. Krylova, S. Žalenkiene, N. Dukštiene, and R. Bliudžius, “Investigation of the changes in physical properties of PES/PVC fabrics after aging”, Journal of Applied Polymer Science, vol. 136, no. 21, art. no. 47523, 2019, DOI: 10.1002/app.47523.
  • [22] L. Zheng, Y. Ye, J. Zhuang, and Y. Zheng, “Impact Tensile Behaviors of PVDF Building Coated Fabrics”, Advances in Civil Engineering, vol. 2020, art. no. 1620760, 2020, DOI: 10.1155/2020/1620760.
  • [23] P. Kłosowski, K. Żerdzicki, and K. Woznica, “Influence of artificial thermal ageing on polyester-reinforced and polyvinyl chloride coated AF9032 technical fabric”, Textile Research Journal, vol. 89, no. 21-22, pp. 4632-4646, 2019, DOI: 10.1177/0040517519839934.
  • [24] A. Ambroziak, “Mechanical Properties of Polyester Coated Fabric Subjected to Biaxial Loading”, Journal of Materials in Civil Engineering, vol. 27, no. 11, art. no. 04015012, 2015, DOI: 10.1061/(ASCE)MT.1943- 5533.0001265.
  • [25] A. Ambroziak and P. Kłosowski, “Mechanical properties of Precontraint 1202 S2 based on uniaxial tensile and creep tests”, Journal of Reinforced Plastics and Composites, vol. 36, no. 4, pp. 254-270, 2017, DOI: 10.1177/0731684416682604.
  • [26] Y. Yu, Z. Cao, and Y. Sun, “Mechanical properties of four types of PVC-coated woven fabrics at hightemperature and after exposure to high-temperature”, Structures, vol. 33, pp. 830-840, 2021, DOI: 10.1016/j.istruc.2021.04.036.
  • [27] A. Ambroziak and P. Kłosowski, “Influence of thermal effects on mechanical properties of PVDF-coated fabric”, Journal of Reinforced Plastics and Composites, vol. 33, no. 7, pp. 663-673, 2014, DOI: 10.1177/0731684413512705.
  • [28] H. Asadi, J. Uhlemann, N. Stranghoener, and M. Ulbricht, “Water influence on the uniaxial tensile behavior of polytetrafluoroethylene-coated glass fiber fabric”, Materials, vol. 14, no. 4, art. no. 846, 2021, DOI: 10.3390/ma14040846.
  • [29] H. Asadi, J. Uhlemann, N. Stranghoener, and M. Ulbricht, “Water-induced ageing modification factor for PTFE-coated glass fibre fabric”, in X International Conference on Textile Composites and Inflatable Structures STRUCTURAL MEMBRANES 2021, 13-15 September 2021, Munich, Germany, K.-U. Bletzinger, E. Onate, R. Wüchner, C. Lázaro, Eds. Munich, 2021. [Online].Available: https://www.scipedia.com/public/Asadi_et_al_2021a.
  • [30] PN-88/B-06250 Normal concrete. Warsaw, Poland: PKN (Polish Committee for Standardization), 1988.
  • [31] A. Ambroziak and E. Haustein, “Properties of Old Concrete Built in the Former Leipziger Palace”, Materials, vol. 15, no. 2, art. no. 673, 2022, DOI: 10.3390/ma15020673.
  • [32] P. Szaj and P. Wielgosz, “Mrozoodporność nawierzchni betonowych - wymagania i metody badań”, Budownictwo, Technologie, Architektura, no. 4-6, pp. 68-73, 2020. [Online]. Available: https://www.bta-czasopismo.pl/wp-content/uploads/2020/05/68_Mrozoodpornosc-nawierzchni-betonowych.pdf.
  • [33] T. Rudnicki and R. Jurczak, “Recycling of a Concrete Pavement after over 80 Years in Service”, Materials (Basel), vol. 13, no. 10, art. no. 2262, 2020, DOI: 10.3390/ma13102262.
  • [34] ISO (International Organization for Standardization), ISO 1421 Rubber or plastics-coated fabrics - Determination of tensile strength and elongation at brake. Geneva, Switzerland: International Organization for Standardization, 2016.
  • [35] A. Ambroziak and P. Kłosowski, “Mechanical properties of polyvinyl chloride-coated fabric under cyclic tests”, Journal of Reinforced Plastics and Composites, vol. 33, no. 3, pp. 225-234, 2014, DOI: 10.1177/0731684413502858.
  • [36] R.M. Heiberger and E. Neuwirth, “One-Way ANOVA”, in R Through Excel. New York, NY: Springer New York, 2009, pp. 165-191, DOI: 10.1007/978-1-4419-0052-4_7.
  • [37] T. Górecki and Ł. Smaga, “A comparison of tests for the one-way ANOVA problem for functional data”, Computational Statistics, vol. 30, no. 4, pp. 987-1010, 2015, DOI: 10.1007/s00180-015-0555-0.
  • [38] S.S. Shapiro and M.B. Wilk, “An analysis of variance test for normality (Complete samples)”, Biometrika, vol. 52, no. 3-4, pp. 591-611, 1965, DOI: 10.2307/2333709.
  • [39] M.B. Brown and A.B. Forsythe, “Robust Tests for the Equality of Variances”, Journal of the American Statistical Association, vol. 69, no. 346, pp. 364-367, 1974, DOI: 10.2307/2285659.
  • [40] W.H. Kruskal and W.A. Wallis, “Use of Ranks in One-Criterion Variance Analysis”, Journal of the American Statistical Association, vol. 47, no. 260, pp. 583-621, 1952, DOI: 10.2307/2280779.
  • [41] G. Cardillo, Holm-Sidak t-test, GitHub, 2022. [Online]. Available: https://github.com/dnafinder/holm. [Accessed: 08-Feb-2022].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-798a62db-9d9a-49db-8167-99d97eb89073
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.