PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie tranzystorów HEMT z azotku galu w impulsowych przekształtnikach mocy

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Praca zawiera przegląd problematyki zastosowań tranzystorów HEMT (high electron mobility transistors) w wysokosprawnych układach przekształtników mocy. Wymieniono najważniejsze wymagania stawiane elementom półprzewodnikowym we współczesnych przekształtnikach energoelektronicznych. Przedstawiono główne cechy heterostruktur GaN-GaAlN i tranzystorów opartych na takich strukturach. Przedyskutowano różne rozwiązania konstrukcyjno-technologiczne struktur HEMT o cechach tranzystora normalnie wyłączonego (pracującego ze wzbogaceniem). Pokazano przykładowe parametry tranzystorów HEMT pracujących dla energoelektroniki. Omówiono także wybrane rozwiązania impulsowych przekształtników BUCK i BOOST oparte na tranzystorach HEMT i ich główne właściwości.
EN
The applications of gallium nitride (GaN) high electron mobility transistors (HEMT) in modern power converters are reviewed. Basic demands for semiconductor devices used in switch-mode high efficiency power converters are summarized. Specific features of GaN-GaAlN heterostructure and HEMT’s are briefly described. Different solutions of enhancement-mode HEMT applicable in power converters of resulting parameters of HEMT-based enhancement-mode transistors are given. The exemplary power converters based on GaN HEMT’s, including BUCK and BOOST circuits are presented and their features discussed.
Rocznik
Tom
Strony
5--27
Opis fizyczny
Bibliogr. 63 poz., rys., tab., wykr.
Twórcy
autor
  • Katedra Elektroniki Politechnika Koszalińska
Bibliografia
  • 1. W. Janke, W. Wojtasiak, Właściwości i zastosowania tranzystorów HEMT na bazie azotku galu, Przegląd Elektrotechniczny, R. 91, Nr 9/2015, pp. 65-73.
  • 2. A. Lidow et al., GaN Transistors for Efficient Power Conversion, WILEY, 2015.
  • 3. U.K. Mishra, P. Parikh and Y. Wu, AlGaN/GaN HEMTs - An Overview of Device Operation and Applications, Proc. IEEE, vol. 90, N. 6, June 2002, pp. 1022-1031.
  • 4. N.Z. Yahaya, M.B.K. Raethar and M. Awan, Review of Gallium Nitride HEMT Device Technology for High Frequency Converter Applications, J. of Power Electronics, V. 9, N. 1, Jan. 2009, pp. 36-42.
  • 5. W. Janke, Ograniczenia właściwości użytkowych tranzystorów HEMT wykonywanych na bazie azotku galu, Raport niepublikowany, 2014.
  • 6. Y.C. Liang et al., AlGaN/GaN Power HEMT Devices for Future Energy Conversion Applications, IEEE 2nd International Symposium on Next-Generation Electronics, Kaohsiung, Feb. 25-26, 2013, pp. 7-10.
  • 7. A. Nakajima, K. Takao and H. Ohashi, GaN Power Transistor Modeling for High-Speed Converter Circuit Design, IEEE Trans. on Electron Devices, Vol. 60, N. 2, Feb. 2013, pp. 646-652.
  • 8. J. Baliga, Advanced power rectifier concepts, Springer 2009, Ch. 2: Schottky rectifiers.
  • 9. J. Baliga, The future of power semiconductor device technology, Proc. IEEE, Vol. 89, N. 6, June 2001, pp. 822-831.
  • 10. E. Sönmez et al., Gallium Nitride for 600V Operation, Power Electronics Europe, Is. 4, 2011, pp. 25-28.
  • 11. R. Mitova et al., Investigations of 600 V GaN HEMT and GaN Diode for Power Converter Applications, IEEE Trans. on Power Electronics, 2013.
  • 12. N. Zhang, High voltage GaN HEMTs with low on-resistance for switching applications, PhD. Dissertation, University of California, Santa Barbara, 2002.
  • 13. M. Su et al. Challenges in the Automotive of GaN Power Switching Devices, CS MANTECH Conference, April 23rd – 26th, 2012, Boston, Massachusetts, USA.
  • 14. R. Fernandes, A Multi-Mode 1 MHz PFC Rectifier with Digital Peak Current Modulation. MSc. thesis, University of Toronto, 2015.
  • 15. A. Bhalla, Market Penetration of Wide-Bandgap SiC and GaN technology in light of Silicon Superjunction and IGBT technology evolution. CS MANTECH Conference, May 2014, Denver, Colorado, USA, pp. 9-12.
  • 16. E. Persson, How 600V GaN Transistors Improve Power Supply Efficiency and Density, Power Electronics Europe, Issue 2, 2015, pp. 22-25.
  • 17. M. Cooke, Developing market for normally-off nitride power electronics, Semiconductor Today – Compounds & Advanced Silicon, vol.7, Issue 9, 2013, pp. 82-87.
  • 18. G. Patterson, GaN Switching for Efficient Converters, Power Electronics Europe, Issue 5, 2013, pp. 18-21.
  • 19. A. Tüysüz et al. Performance Comparison of a GaN GIT and a Si IGBT for High-Speed Drive Applications. The 2014 International Power Electronics Conference.
  • 20. J. Rąbkowski and R. Barlik, Experimental evaluation of GaN Gate Injection Transistors. Przegląd Elektrotechniczny, Nr 3/2015, str. 9-12.
  • 21. O. Hilt et al. Normally-off GaN Transistors for Power Applications. MicroTherm’2015, Conference Series 494 (2014).
  • 22. S. Cheng and P.C. Chou. GaN-HEMTs Cascode Switch: Fabrication and Demonstration on Power Conditioning Applications. Proceedings of the 3rd International Conference on Industrial Application Engineering 2015, pp. 548-554.
  • 23. S. Hamady, New concepts for normally-off power Gallium Nitride (GaN) High Electron Mobility Transistor, PhD Thesis, University of Toulouse, 2014.
  • 24. H. Sin and S. Kaneko, Novel GIT Structure Solves Current Collapse in Power HEMT’s, How2 Power Today, Sept. 2015, pp. 1-6.
  • 25. J. Roberts et al. GaN Transistors – Drive Control, Thermal Management, Isolation. Power Electronics Technology, February 2013, pp. 24-28.
  • 26. D. Jin and J.A. del Alamo, Mechanisms Responsible for Dynamic ON-Resistance in GaN High-Voltage HEMT’s, Proc. of the 2012 24th Intern. Symp. on Power Semiconductor Devices and IC’s, June 3-7, 2012, Bruges, Belgium, pp. 333-336.
  • 27. D. Jin, J. del Alamo, Methodology for the study of Dynamic ON-Resistance in High-Voltage GaN Field-Effect Transistors, IEEE Trans. on Electron Devices, Vol. 60, N. 10, Oct. 2013, pp. 3190-3196.
  • 28. B. Lu and T. Palacios High Breakdown (> 1500 V)) AlGaN/GaN HEMTs by Substrate-Transfer Technology, IEEE Electron Device Letters, Vol. 31, N. 9, Sept. 2010, pp. 951-953.
  • 29. Z. Zhao et al., Impact of Surface Traps on the Breakdown Voltage of Passivated AlGaN/GaN HEMTs Under High-Field Stress, Micro & Nano Letters, Vol. 7, Iss. 11, 2012, pp. 1140-1142.
  • 30. D.J. Macfarlane, Design and fabrication of AlGaN/GaN HEMTs with high breakdown voltages, PhD Dissertation, School of Engineering, University of Glasgow, 2014.
  • 31. D. Visali, Optimization of GaN-on-Si HEMTs for High Voltage Application, PhD thesis, Katholieke Universiteit Leuven, 2011.
  • 32. H. Mosbahi et al., Electrical Characterization of AlGaN/GaN HEMTs on Si Substrate, Journal of Electron Devices, vol.15, 2012, pp. 1225-1231.
  • 33. S. She et al. Thermal analysis and improvement of cascade GaN device package for totem-pole bridgeless PFC rectifier, Applied Thermal Engineering 90 (2015), pp. 413-423.
  • 34. J.B. King, T.J. Bazil, Nonlinear Electrothermal GaN HEMT Model Applied to High-Efficiency Power Amplifier Design, IEEE Trans. on Microwave Theory and Techniques, vol. 61, N. 1, Jan. 2013, pp. 444-454.
  • 35. X.D. Wang, W.D. Hu, X.S. Chen and W. Lu, The Study of Self-Heating and Hot-Electron Effects for AlGaN/GaN Double-Channel HEMTs, IEEE Trans. on El. Dev., vol. 59, NO. 5, May 2012, pp. 1393-1401.
  • 36. A. Santarelli et al. Nonlinear Thermal Resistance Characterization for Compact Electrothermal GaN HEMT Modelling, Proc. 5-thEurop. Microwave Integrated Circuits Conf. 27 – 28 Sept. 2010, Paris France, pp. 82-85.
  • 37. M. Bernardoni, N. Delmonte, R. Menozzi, Empirical and Physical Modeling of Self-Heating in Power AlGaN/GaN HEMT, CS MANTECH Conference, Apr. 23 – 26, 2012, Boston, USA.
  • 38. H.C. Nochetto, N.R. Jankowski, A. Bar-Cohen, The Impact of GaN/Substrate Thermal Boundary Resistance on a HEMT Device, Proc. ASME IMECE 2011, Nov. 11-17, 2011, Denver, USA.
  • 39. S. Dahmani, Large-Size AlGaN/GaN HEMT Large-Signal Electrothermal Characterization and Modeling for Wireless Digital Communications, PhD Dissertation, University of Kassel, 2011.
  • 40. J.A.F. Perez, Thermal Study of a GaN-Based HEMT, PhD thesis, University of Notre Dame, Indiana, 2012.
  • 41. P.C. Chou and S. Cheng, Performance characterization of gallium nitride HEMT cascade switch for power conditioning applications, Materials Science and Engineering B 198 (2015) 43-50.
  • 42. RFJS006F Technical Data, RFMD Inc. USA.
  • 43. Transphorm – Establishing the New Power Conversion Platform, Materiały firmy Transphorm.
  • 44. F. Recht et al., Characteristics of Transphorm GaN Power Switches, Appl. N te AN-0002, Transphorm Inc.
  • 45. S. Lin and A.E. Fathy, A 20 W GaN HEMT VHF/UHF Class-D Power Amplifier, IEEE 12th Annual Wireless and Microwave Technology Conference (WAMICON), Clearwater Beach, 18-19 April 2011, pp. 1-4.
  • 46. D. Kalim, D. Pozdniakov and R. Negra, A 3.37 GHz Class-F-1 Power Amplifier with 77% PAE in GaN HEMT Technology, PRIME 2012, Aachen, Session FG2 – Transceivers, pp. 297-300.
  • 47. J.A. Garcia, R. Marante and M.N.R. Lavin, GaN HEMT Class E2 Resonant Topologies for UHF DC/DC Power Conversion, IEEE Trans. on Microwave Theory and Techniques, Vol. 60, N. 12, Dec. 2012, pp. 4220-4229.
  • 48. R. Marante et al., A UHF Class E2 DC/DC Converter Using GaN HEMTs, IEEE MTT-S 2012 Intern. Microwave Symposium, Montreal.
  • 49. Y. Wu et al., A 97.9% Efficient GaN HEMT Boost Converter With 300-W Output Power at 1 MHz, IEEE Electron Device Letters, Vol. 29, Issue 8, Aug. 2008, pp. 824-826.
  • 50. J. Everts et al. A Hard Switching VIENNA Boost Converter for Characterization of AlGaN/AlGaN Power DHFETs. Abstract for PCIM Europe 2010.
  • 51. B. Hughes et al., A 95% Efficient Normally-Off GaN-on-Si HEMT Hybrid-IC Boost-Converter with 425-W Output Power at 1 MHz, IEEE Compound Semiconductor Integrated Circuit Symposium, (CSICS),Waikoloa, 16-19 Oct. 2011, pp. 1-3.
  • 52. F. Gamand, M.D. Li and C. Gaquiere, A 10 MHz GaN HEMT DC/DC Boost Converter for Power Amplifier Applications, IEEE Trans. on Circuits and Systems – II: Express Briefs, Vol. 59, N. 11, Nov. 2012, pp. 776-779.
  • 53. M. Kasper et al. PV Panel-Integrated High Step-up High Efficiency Isolated GaN DC-DC Boost Converter. INTELEC(r) 2013, October 2013, Hamburg, pp. 602-608.
  • 54. Utilizing GaN HEMTs in All-in-One Workstation Power Supply, DN05067/D, ON Semiconductor, 2015.
  • 55. F. Gamand, V.D. Giacomo and C. Gaquiere, 10 MHZ DC/DC Converter Based on GaN HEMT for RF Applications, 33rd Intern. IEEE Telecommunications Energy Conference, Amsterdam, 9-13 Oct. 2011, pp. 1-4.
  • 56. E. Abdoulin and A. Lidow, High Frequency 24 V – 1 V DC-DC Converters Using EPC’s Gallium Nitride (GaN) Power Transistors, Appl. Note AN007, Efficient Power Corporation, 2011, pp. 1-4.
  • 57. J. Delaine et al., Improvement of GaN Transistors Working Conditions to Increase Efficiency of a 100 W DC-DC Converter, Twenty Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, 17-21 March 2013, pp. 3232-3235.
  • 58. S.L. Jeng et al. Quasi-Resonant Flyback DC/DC Converter Using GaN Power Transistors. World Electric Vehicle Journal Vol. 5 California, 2012, pp. 0567-0573.
  • 59. Y-F. Wu et al., High-Frequency, GaN Diode-Free Motor Drive Inverter with Pure Sine Wave Output, Power Transmission Engineering, Oct. 2012, pp. 40-43.
  • 60. H. Nakao et al., 2.5-kW Power Supply Unit with Semi-Bridgeless PFC Designed for GaN-HEMT, Twenty Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, 17-21 March 2013, pp. 656-663.
  • 61. W. Zhang et al., Evaluation of 600V Cascode GaN HEMT in Device Characterization and All-GaN-Based LLC Resonant Converter, IEEE Energy Conversion Congress and Exposition, Denver, 15-19 Sept. 2013, pp. 3571-3578.
  • 62. Y. Kobayashi et al., GaN HEMT Based Rectifier for Spacecraft Health Monitoring System Using Microwave Wireless Power Transfer, Proc. of APMC, Kaohsiung, Taiwan, Dec. 4-7, 2012, pp. 391-393.
  • 63. Y. Hayashi et al. Design Consideration for High Power Density GaN Buck-Rectifier in ISOP-IPOS Converter based dc Distribution System. Journal of Energy and Power Engineering 9 (2015), pp. 574-584.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7987c038-0fc8-4e3d-a06b-c4b25962674a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.