PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An implementation of articial advisor for dynamic classication of objects

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an original method of dynamic classication of objects from a new domain which lacks an expert knowledge. The method relies on analysis of attributes of objects being classied and their general quality Q, which is a combination of particular object's attributes. The method uses a test of normality as a basis for computing the reliability factor of the classication (rfc), which indicates whether the classication and the model of quality Q are reliable. There is no need to collect data about all objects before the classication starts and possibly the best objects ale selected dynamically (on-the-y) while data concerning consecutive objects are gathered. The method is implemented as a software tool called Articial Classication Adviser (ACA). Moreover, the paper presents a case study, where the best candidates for reghting mobile robot operators are selected.
Słowa kluczowe
EN
rfc   ACA   database  
Rocznik
Strony
40--49
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
  • Department of Computer Science, Kielce University of Technology
autor
  • Department of Computer Science, Kielce University of Technology
autor
  • Department of Computer Science, Kielce University of Technology
Bibliografia
  • [1] Abdi H., Molin P.: Lilliefors/Van Soest's test of normality, https://www.utdallas.edu/herve/Abdi-Lillie2007-pretty.pdf [accessed Feb-2015]
  • [2] Cichosz P.: Systemy uczące się, WNT, Warszawa 2000
  • [3] Gas Hazardous Operations Support Team (GHOST): https://www.qinetiq.com/services-products/survivability/UGV/hazmat-and-re-ghting/Pages/ghost.aspx [accessed Feb-2015]
  • [4] Hand D., Mannila H., Smyth P.: Eksploracja danych, WNT 2005
  • [5] Internetowy Podręcznik Statystyki, http://www.statsoft.pl/textbook/stathome.html [accessed Feb-
  • [6] Łukawska B.: Metodologia dynamicznego wyznaczania modeli nieznanych obiektów na przykładzie szkolenia i selekcjonowania operatorów mobilnego robota, rozprawa doktorska, Kielce 2013
  • [7] Michalewicz Z.: Algorytmy + struktury danych = programy ewolucyjne, WNT, Warszawa 2003
  • [8] Pawlak Z.: Rough classication, International Journal of Human-Computer Studies, Volume 51, Issue 2, 1999
  • [9] Quinlan J. R.: Induction of decision trees, Machine Learning, 1986
  • [10] Quinlan J. R.: C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, San Mateo, CA, 1993
  • [11] Rutkowski L.: Metody i techniki sztucznej inteligencji, Wydawnictwo Naukowe PWN, Warszawa 2006
  • [12] Statistica, StatSoft Polska, http://www.statsoft.pl [accessed Feb-2015]
  • [13] SuanShu, Numerical Method Inc.: http://numericalmethod.com/suanshu [accessed Jan-2015]
  • [14] WEKA, The University of Waikato, http://www.cs.waikato.ac.nz/ml/weka [accessed Jan-2015]
  • [15] Witten, I. A., Frank, E.: Data Mining, Morgan Kaufmann, 2000
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79840c68-f7a7-4f17-9dcf-d25005ea2e2b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.