Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The article deals with the influence of chemical composition of martensitic stainless steel for castings GXCrNi13-4 (the 1.4317 material) on mechanical properties and structure of as cast steel after heat treatment. Properties of these martensitic stainless steel are heavily influenced by chemical composition and structure of the material after heat treatment. Structure of these steels after quenching is formed with martensite and residual austenite. When tempering the steel the carbon content in martensite is reduced and gently deposited carbides occur. The way of heat treatment has a major impact on structure of martensitic steels with low carbon content and thus on strength, hardness and elongation to fracture of these steels. Chemical composition of the melt has been treated to the desired composition of the lower, middle and upper bounds of the nickel content in the steel within the limits allowed by the standard. Test blocks were gradually cast from the melt. The influence of the nickel equivalent value on structure and properties of the 1.4317 steel was determined from results of mechanical tests.
Czasopismo
Rocznik
Tom
Strony
220--225
Opis fizyczny
Bibliogr. 7 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
autor
- Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
autor
- Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
autor
- Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
Bibliografia
- [1] Čihal, V. (1999). Stainless steels and alloys. Praha: Academia. ISBN 80-200-0671-0. (in Czech).
- [2] Šenberger, J., Bůžek, Z., Záděra, A., Stránský. K., Kafka, V. (2008). Metallurgy of steel for castings. Brno VUT v Brně Nakladatelství Vutium. ISBN: 978-80-214-3632-9. (in Czech).
- [3] Tsuchiyama, T., Tobata, J., Tao, T., Nakada, N. & Takaki, S. (2012). Quenching and partitioning treatment of a low-carbon martensitic stainless steel. Material Science and Engineering A. 532, 585-592. DOI: 10.1016/j.msea.2011.10. 125.
- [4] Isfahany, A.N., Saghafian, H. & Borhani, G. (2011). The effect of heat treatment on mechanical properties and corrosion behaviour of AISI420 martensitic stainless steel. Journal of Alloys and Compounds. 509, 3931-3936. DOI: 10.1016/j.msea.2009.08.022.
- [5] Song, Y.Y., Ping, D.H., Yin, X.Y., Li, X.Y. & Li, Y.Y. (2010). Microstructural evolution and low temperature impact toughness of a Fe–13%Cr–4%Ni–Mo martensitic stainless steel. Material Science and Engineering A. 527, 614-618. DOI: 10.1016/j.jallcom.2010.12.174.
- [6] Wang. P., Lu. S.P., Xiao. D.Z. & Li. Y.Y. (2010). Effect of delta ferrite on impact properties of low carbon 13Cr-4Ni martensitic stainless steel. Material Science and Engineering A. 527, 3210-3216. DOI: 10.1016/j.msea.2010.01.085.
- [7] Gervasi, C.A., Mendéz, C.M., Bilmes, P.D. & Llorente, C.L. (2011). Analysis of the impact of alloy microstructural properties on passive films formed on low-C 13CrNiMo martensitic stainless steels. Material Chemistry and Physic. 126, 178-182. DOI: 10.1016/j.matchemphys.2010.11.0.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7981e240-ac3d-4aae-a455-159f1dae87a5