Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Cost estimation, as one of the key processes in construction projects, provides the basis for a number of project-related decisions. This paper presents some results of studies on the application of artificial intelligence and machine learning in cost estimation. The research developed three original models based either on ensembles of neural networks or on support vector machines for the cost prediction of the floor structural frames of buildings. According to the criteria of general metrics (RMSE, MAPE), the three models demonstrate similar predictive performance. MAPE values computed for the training and testing of the three developed models range between 5% and 6%. The accuracy of cost predictions given by the three developed models is acceptable for the cost estimates of the floor structural frames of buildings in the early design stage of the construction project. Analysis of error distribution revealed a degree of superiority for the model based on support vector machines.
Czasopismo
Rocznik
Tom
Strony
48--67
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
- Cracow University of Technology, Faculty of Civil Engineering
Bibliografia
- 1. Attar, A.M., Khanzadi, M., Dabirian, S. and Kalhor, E. 2013. Forecasting contractor's deviation from the client objectives in prequalification model using support vector regression, International Journal of Project Management 31(6), 924-936.
- 2. Bishop C.M. 1995. Neural networks for pattern recognition. Oxford University Press.
- 3. Bougoudis, I., Iliadis, L. and Papaleonidas, A. 2014. Fuzzy inference ANN ensembles for air pollutants modeling in a major urban area: the case of Athens. In: Mladenov, V., Jayne, C., Iliadis, L., (eds) Engineering Applications of Neural Networks. EANN 2014. Communications in Computer and Information Science 459, Cham: Springer, 1-14.
- 4. Cheng, M.Y. and Hoang, N.D. 2014. Interval estimation of construction cost at completion using least squares support vector machine. Journal of Civil Engineering and Management 20(2), 223-236.
- 5. Cristianini, N. and Shawe-Taylor, J. 2000. An Introduction to Support Vector Machines (and Other Kernel-based Learning Methods). Cambridge: Cambridge University Press.
- 6. El-Sawalhi, N.I. and Shehatto, O. 2014. A Neural Network Model for Building Construction Projects Cost Estimating. Journal of Construction Engineering and Project Management 4(4), 9–16.
- 7. El-Sawy, I.Y., Hosny, H.E. and Razek, M.A. 2011. A Neural Network Model for Construction Projects Site Overhead Cost Estimating in Egypt. International Journal of Computer Science Issues 8(3), 273-283.
- 8. Erdal, H.I., Karakurt, O. and Namli, E. 2013. High performance concrete compressive strength forecasting using ensemble models based on discrete wavelet transform. Engineering Applications of Artificial Intelligence 26(4), 1246-1254.
- 9. Foussier, P.M.M. 2006. From Product Description to Cost: A Practical Approach, vol.1: The Parametric Approach. Berlin: Springer.
- 10. Gunn, S.R. 1997. Support Vector Machines for Classification and Regression. Technical Report. Southampton: University of Southampton, Image Speech and Intelligent Systems Research Group.
- 11. Haykin, S. 1998. Neural Networks: A Comprehensive Foundation, Prentice Hall.
- 12. Jetcheva, J.G., Majidpour, M. and Chen, W. P. 2014. Neural network model ensembles for building-level electricity load forecasts. Energy and Buildings 84, 214-223.
- 13. Juszczyk, M. 2017. The challenges of nonparametric cost estimation of construction works with the use of artificial intelligence tools. Procedia engineering 196, 415-422.
- 14. Juszczyk, M. 2018. Implementation of the ANNs ensembles in macro-BIM cost estimates of buildings’ floor structural frames. AIP Conference Proceedings 1946(1), 020014.
- 15. Juszczyk, M. 2019. Cost Estimates of Buildings’ Floor Structural Frames with the Use of Support Vector Regression. IOP Conference Series: Earth and Environmental Science 222(1), 012007.
- 16. Juszczyk, M. 2020. On the Search of Models for Early Cost Estimate of Bridges: An SVM-Based Approach. Buildings 10(1), 2, 1-17.
- 17. Juszczyk, M. 2020. Analysis of labour efficiency supported by the ensembles of neural networks on the example of steel reinforcement works. Archives of Civil Engineering 66(1), 97-111.
- 18. Juszczyk, M, Leśniak, A. and Zima, K. 2018. ANN Based Approach for Estimation of Construction Costs of Sports Fields. Complexity 2018, 1-11.
- 19. Kasprowicz, T 2007. Inżynieria przedsięwzięć budowlanych in Kapliński O, (ed.) Metody i modele badań w inżynierii przedsięwzięć budowlanych. Warszawa: Polska Akademia Nauk, Komitet Inżynierii Lądowej i Wodnej, 35-78.
- 20. Kim, GH, Shin, JM, Kim, S. and Shin, Y. 2013. Comparison of School Building Construction Costs Estimation Methods Using Regression Analysis, Neural Network and Support Vector Machine. Journal of Building Construction and Planning Research 2013.1, 1-7.
- 21. Kong, F., Wu, X and Cai, L. 2008. Application of RS-SVM in construction project cost forecasting. WiCOM'08 - 4th International Conference on Wireless Communications, Networking and Mobile Computing, 1.
- 22. Mahdevari, S., Shahriar, K, Yagiz, S. and Shirazi, M.A. 2014. A support vector regression model for predicting tunnel boring machine penetration rates, International Journal of Rock Mechanics and Mining Sciences 72, 214-229.
- 23. Mrówczyńska, M., Sztubecka, M., Skiba, M., Bazan-Krzywoszańska, A. and Bejga, P., 2019. The Use of Artificial Intelligence as a Tool Supporting Sustainable Development Local Policy, Sustainability 11(15), 1-17.
- 24. Layer, A., Brine, ET., Van Houten, F., Kals, H. and Haasis, S. 2002. Recent and future trends in cost estimation. International Journal of Computer Integrated Manufacturing 15(6), 499–510.
- 25. Leśniak, A. and Juszczyk, M. 2018. Prediction of site overhead costs with the use of artificial neural network based model. Archives of Civil and Mechanical Engineering 18(3), 973-982.
- 26. Osowski, S. 2004. Sieci neuronowe do przetwarzania informacji. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.
- 27. Petroutsatou, K., Georgopoulos, E., Lambropoulos, S. and Pantouvakis, J. P. 2012. Early Cost Estimating of Road Tunnel Construction Using Neural Networks. Journal of Construction Engineering and Management 138(6), 679–687.
- 28. Potts, K. 2008. Construction cost management: learning from case studies. Taylor&Francis.
- 29. Roxas, CLC and Ongpeng J.M.C. 2014, An Artificial Neural Network Approach to Structural Cost Estimation of Building Projects in the Philippines. De La Salle University Research Congress, Manila:DLSU, 1-7.
- 30. Smola, A.J. and Schölkopf, B. 2004. A tutorial on support vector regression. Statistics and computing 14.3, 199-222.
- 31. Stewart, RD and Wyskida, R.M. 1987. Cost Estimator's Reference Manual. New York: Wiley.
- 32. Tadeusiewicz, R. 1993. Sieci neuronowe. Warszawa: Akademicka Oficyna Wydawnicza.
- 33. Tsybakov, AB, 2008. Introduction to nonparametric estimation. Paris: Springer.
- 34. Wang, YR, Yu, CY and Chan, HH 2012. Predicting construction cost and schedule success using artificial neural networks ensemble and support vector machines classification models, International Journal of Project Management 30(4), 470-478.
- 35. Wilmot, CG and Mei, B. 2008. Neural network modeling of highway construction costs. Journal of Construction Engineering and Management 131(7), 765-771.
- 36. Vapnik, V. 2013. The Nature of Statistical Learning Theory. New York: Springer.
- 37. Zhang, F., Deb, C., Lee, SE, Yang, J. and Shah, KW. 2016. Time series forecasting for building energy consumption using weighted Support Vector Regression with differential evolution optimization technique, Energy and Buildings 126, 94-103.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-797d1d28-9c20-4b1a-8639-96ab0baffdd9