PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Waveform-reconfigurable emitter design for multi frequency electrical tomography

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Konstrukcja nadajnika z rekonfigurowalnym kształtem fali dla wieloczęstotliwościowej tomografii elektrycznej
Języki publikacji
EN
Abstrakty
EN
In this work we present a design of a multi-frequency electrical tomography (ET) data acquisition device focused on reconfiguration of the emitter for on-line customization of excitation signals. The design is conceived to acquire data for in vivo medical monitoring. This device is implemented using FPGA for real-time data acquisition and a microcontroller SoC that enables internet of things capabilities for further escalation of the device functionality. The ET device allow the study of frequency responses and the generation of customized excitation signals.
PL
W niniejszej pracy przedstawiamy projekt urządzenia do akwizycji danych z wieloczęstotliwościowej tomografii elektrycznej (ET), którego celem jest rekonfiguracja emitera w celu dostosowania sygnałów wzbudzenia w trybie online. Projekt ma na celu pozyskiwanie danych do monitorowania medycznego in vivo. Urządzenie zostało zaimplementowane przy użyciu FPGA do akwizycji danych w czasie rzeczywistym oraz mikrokontrolera SoC, w celu dalszego zwiększenia funkcjonalności urządzenia. Urządzenie ET umożliwia badanie odpowiedzi częstotliwościowych i generowanie niestandardowych sygnałów pobudzających.
Rocznik
Strony
164--167
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
  • Research & Development Centre Netrix S.A
  • University of Economics and Innovation, Projektowa 4, Lublin, Poland
autor
  • Research & Development Centre Netrix S.A
  • University of Economics and Innovation, Projektowa 4, Lublin, Poland
Bibliografia
  • [1] Rymarczyk T., Vejar A., Multi frequency electrical tomography with re-configurable excitation waveforms, 2019 Applications of Electromagnetics in Modern Engineering and Medicine, PTZE 2019, 2019, 198-202
  • [2] Dušek J., Hladký D., Mikulka J., Electrical Impedance Tomography Methods and Algorithms Processed with a GPU, In PIERS Proceedings, 2017, 1710-1714. PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 96 NR 8/2020 167
  • [3] Korzeniewska E., Walczak M., Rymaszewski J., Elements of Elastic Electronics Created on Textile Substrate, Proceedings of the 24th International Conference Mixed Design of Integrated Circuits and Systems, MIXDES 2017, 447-45.
  • [4] Kryszyn J., Smolik W., Toolbox for 3d modelling and image reconstruction in electrical capacitance tomography, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska (IAPGOŚ) , 7 (2017), No. 1,137-145.
  • [5] Nowakowski J., Ostalczyk P., Sankowski D., Application of fractional calculus for modelling of two-phase gas/liquid flow system, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska (IAPGOŚ) , 7 (2017), No. 1, 42-45.
  • [6] Rymarczyk T., Characterization of the shape of unknown objects by inverse numerical methods, Przegląd Elektrotechniczny, 88 (2012), No 7b, 138-140
  • [7] Rymarczyk T., Adamkiewicz P., Polakowski K., Sikora J., Effective ultrasound and radio tomography imaging algorithm for two-dimensional problems, Przegląd Elektrotechniczny, 94 (2018), No 6, 62-69
  • [8] Rymarczyk T., Szumowski K., Adamkiewicz P., Tchórzewski P., Sikora J., Moisture Wall Inspection Using Electrical Tomography Measurements, Przegląd Elektrotechniczny, 94 (2018), No 94, 97-100
  • [9] Rymarczyk T., Tchórzewski P., Sikora J.: Implementation of Electrical Impedance Tomography for Analysis of Building Moisture Conditions, Compel The international journal for computation and mathematics in electrical and electronic engineering, 37 (2018), No. 5, 1837-1861
  • [10] Vališ, D., & Mazurkiewicz, D. (2018). Application of selected Levy processes for degradation modelling of long range mine belt using real-time data. Archives of Civil and Mechanical Engineering, 18 (2018), No. 4, 1430-1440.
  • [11] Kowalska A., Banasiak R., Romanowski A., Sankowski D., Article 3D-Printed Multilayer Sensor Structure for Electrical Capacitance Tomography, 19 (2019), Sensors, 3416
  • [12] Galazka-Czarnecka, I.; Korzeniewska E., Czarnecki A. et al., Evaluation of Quality of Eggs from Hens Kept in Caged and Free-Range Systems Using Traditional Methods and Ultra- Weak Luminescence, Applied sciences-basel, 9 (2019), No. 12, 2430.
  • [13] Rymarczyk T, Kłosowski G. Innovative methods of neural reconstruction for tomographic images in maintenance of tank industrial reactors. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 21 (2019); No. 2, 261–267
  • [14] Rymarczyk, T.; Kozłowski, E.; Kłosowski, G.; Niderla, K. Logistic Regression for Machine Learning in Process Tomography, Sensors, 19 (2019), 3400.
  • [15] Macdonald J. R. and Johnson W. B., Fundamentals of Impedance Spectroscopy, ch. 1, 1–26. John Wiley & Sons, Ltd, 2005.
  • [16] Sanchez B., Vandersteen G., Martin I., Castillo D., Torrego A., Riu P. J., Schoukens J., and. Bragos R., In vivo electrical bioimpedance characterization of human lung tissue during the bronchoscopy procedure. a feasibility study, Medical Engineering & Physics, vol. 35, no. 7, pp. 949 – 957, 2013.
  • [17] Kusche R., Klimach P., and Ryschka M., A multichannel realtime bioimpedance measurement device for pulse wave analysis, IEEE Transactions on Biomedical Circuits and Systems, vol. 12, pp. 614–622, June 2018.
  • [18] Curran-Everett D., Zhang Y., Jones M. D., and Jones R. H., An improved statistical methodology to estimate and analyze impedances and transfer functions, Journal of Applied Physiology, vol. 83, no. 6, pp. 2146–2157, 1997. PMID: 9390993.
  • [19] Lasia A., Electrochemical impedance spectroscopy and its applications, in Modern Aspects of Electrochemistry (B. E. Conway, J. O. Bockris, and R. E. White, eds.), pp. 143–248, Boston, MA: Springer US, 2002.
  • [20] Pan H. and Yu S., A reconfigurable pcb test system based on vi, in 2011 International Conference on Electric Information and Control Engineering, pp. 91–94, IEEE, 2011.
  • [21] Neumann P., Pospíšilík M., Skocík P., and Adámek M., Theˇ iv characteristic comparison method in electronic component diagnostics, in 20th IMEKO World Congress 2012, 2012.
  • [22] Piret H., Granjon P., Guillet N., and Cattin V., Tracking of electrochemical impedance of batteries, Journal of Power Sources, vol. 312, pp. 60 – 69, 2016.
  • [23] Bullecks B., Suresh R., and Rengaswamy R., Rapid impedance measurement using chirp signals for electrochemical system analysis, Computers & Chemical Engineering, vol. 106, pp. 421 – 436, 2017. ESCAPE-26.
  • [24] Lewis G. K., Lewis G. K., and Olbricht W., Cost-effective broadband electrical impedance spectroscopy measurement circuit and signal analysis for piezo-materials and ultrasound transducers, Measurement Science and Technology, vol. 19, p. 105102, aug 2008.
  • [25] Adler A. and Boyle A., Electrical impedance tomography: Tissue properties to image measures, IEEE Transactions on Biomedical Engineering, vol. 64, pp. 2494–2504, Nov 2017.
  • [26] Riu P., Rosell J., and Pallas-Areny R., In vivo static imaging for the real and the reactive parts in electrical impedance tomography using multifrequency techniques, in 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 5, pp. 1706–1707, Oct 1992.
  • [27] Oh T. I., Woo E. J., and Holder D., Multi-frequency EIT system with radially symmetric architecture: KHU mark1, Physiological Measurement, vol. 28, pp. S183–S196, jun 2007.
  • [28] Oh T. I., Wi H., Kim D. Y., Yoo P. J., and Woo E. J., A fully parallel multi-frequency EIT system with flexible electrode configuration: KHU mark2, Physiological Measurement, vol. 32, pp. 835–849, jun 2011.
  • [29] McEwan A., Romsauerova A., Yerworth R., Horesh L., Bayford R., and Holder D., Design and calibration of a compact multifrequency EIT system for acute stroke imaging, Physiological Measurement, vol. 27, pp. S199–S210, apr 2006.
  • [30] Oh T. I., Koo H., Lee K. H., Kim S. M., Lee J., Kim S. W., Seo J. K., and Woo E. J., Validation of a multi-frequency electrical impedance tomography (mfEIT) system KHU mark1: impedance spectroscopy and time-difference imaging, Physiological Measurement, vol. 29, pp. 295–307, feb 2008.
  • [31] Halter R. J., Hartov A., and Paulsen K. D., A broadband highfrequency electrical impedance tomography system for breast imaging, IEEE Transactions on Biomedical Engineering, vol. 55, pp. 650–659, Feb 2008.
  • [32] Soni N. K., Hartov A., Kogel C., Poplack S. P., and Paulsen K. D., Multi-frequency electrical impedance tomography of the breast: new clinical results, Physiological Measurement, vol. 25, pp. 301–314, feb 2004.
  • [33] Yerworth R. J., Bayford R., Brown B., Milnes P., Conway M., and Holder D. S., Electrical impedance tomography spectroscopy (eits) for human head imaging, Physiological measurement, vol. 24, no. 2, p. 477, 2003.
  • [34] Romsauerova A., McEwan A., Horesh L., Yerworth R., Bayford R. H., and Holder D. S., Multi-frequency electrical impedance tomography (EIT) of the adult human head: initial findings in brain tumours, arteriovenous malformations and chronic stroke, development of an analysis method and calibration, Physiological Measurement, vol. 27, pp. S147–S161, apr 2006.
  • [35] Zhang S. X., Electrical Impedance Based Spectroscopy and Tomography Techniques for Obesity and Heart Diseases. PhD thesis, California Institute of Technology, 2017.
  • [36] Packham B., Koo H., Romsauerova A., Ahn S., McEwan A., Jun S. C., and Holder D. S., Comparison of frequency difference reconstruction algorithms for the detection of acute stroke using EIT in a realistic head-shaped tank, Physiological Measurement, vol. 33, pp. 767–786, apr 2012.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7977cc51-1b54-450d-a858-2ea22c703805
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.