PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Contemporary overview of soil creep phenomenon

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Soil creep deformation refers to phenomena which take place in many areas and research in this field of science is rich and constantly developing. The article presents an analysis of the literature on soil creep phenomena. In light of the complexity of the issues involved and the wide variety of perspectives taken, this attempt at systematization seeks to provide a reliable review of current theories and practical approaches concerning creep deformation. The paper deals with subjects such as definition of creep, creep genesis, basic description of soil creep dynamics deformation, estimation of creep capabilities, various fields of creep occurrence, and an introduction to creep modeling. Furthermore, based on this analysis, a new direction for research is proposed.
Wydawca
Rocznik
Strony
28--40
Opis fizyczny
Bibliogr. 48 poz., rys., wykr., zdj.
Twórcy
  • Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warszawa
autor
  • Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warszawa
Bibliografia
  • 1. Azari B., Fatahi B., Khabbaz H. (2015) Assessment of the elastic-viscoplastic behavior of soft soils improved with vertical drains capturing reduced shear strength of a disturbed zone. International Journal of Geomechanics 16, 1, B4014001 1-15.
  • 2. Bogusz W., Witowski M. (2015) Validation of the Hardening Soil small model in triaxial soil test with local strain transducers. Inżynieria Morska i Geotechnika 3, 262– 266.
  • 3. Clayton C.I.R., Khatrush S. A. (1986) A new device for measuring local axial strains on triaxial specimens. Geotechnique 36, 4, 593–597.
  • 4. Degago S.A., Grimstad G., Jostad H.P., Nordal S. (2009) The non-uniqueness of the endof-primary (EOP) void ratio effective stress relationship, [In:] Proc. 17th Inter. Conference on Soil Mechanics and Geotechnical Engineering, Alexandria, Egypt, 324–327.
  • 5. Dobak P. (1986) Zmiany odkształcalności gruntów wywołane procesami inżyniersko - geologicznymi w rejonie Kopalni Węgla Brunatnego „Bełchatów”. PhD dissertation, University of Warsaw.
  • 6. Dobak P. (1999) Rola czynnika filtracyjnego w badaniach jednoosiowej konsolidacji gruntu. Wyd. CPPGSMiE PAN.
  • 7. Dobak P., Gaszyński J. (2015) Evaluation of soil permeability from consolidation analysis based on Terzaghi’s and Bio’s theories. Geological Quarterly 59, 2, 373381. DOI: http://dx.doi.org/10.7306/gq.1197.
  • 8. Fatahi B., Le T. M., Le M. Q., Khabbaz H. (2013) Soil creep effects on ground lateral deformation and pore water pressure under embankments. Geomechanics and Geoengineering 8, 2, 107–124. DOI: 10.1080/17486025.2012.727037.
  • 9. Glazer Z. (1985) Mechanika gruntów. Wyd. Geologiczne. Grimstad G., Mehli M., Degago, Samson A. (2015) Creep in Clay During the First Few Years After Construction. [In:] Proc. 6th Int. Sym. on Deformation Characteristics of Geomaterials, Buenos Aires, 915-922.
  • 10. Grimstad G., Haji Ashrafi M.A., Degago S.A., Emdal A., Nordal S. (2016) Discussion of “Soil creep effects on ground lateral deformation and pore water pressure under embankments”. Geomechanics and Geoengineering 11, 1, 86-93. DOI: 10.1080/17486025.2014.985338.
  • 11. Gudehus G. (1979) Näherungsformeln und Geschwindigkeiten und Kräfte in fließenden bindigen Boden. Freiberger Forschungsheft 617, 41-55.
  • 12. Gudehus G. (2011) Physical Soil Mechanics. Springer.
  • 13. Havel F. (2004) Creep in soft soils. PhD dissertation, Norwegian University of Science and Technology in Trondheim.
  • 14. Head K.H. (1994) Manual of Soil Laboratory Testing. Volume 2: Permeability, Shear Strength and Compressibility Tests. John Wiley and Sons, Second Edition,
  • 15. Jamiolkowski M., Ladd, C.C., Germaine, J.T., Lancellolta, R. (1985) New developments in field and laboratory testing of soils. [In:] Proc. 11th Int. Conf. on Soil Mechanics and Foundation Engineering, San Francisco, 57–153.
  • 16. Janbu N. (1969) The resistance concept applied to deformations of soils. [In:] Proc. 7th Int. Conf. Soil Mechanics Foundation Engineering, Mexico City, 191-196.
  • 17. Kaczmarek Ł. (2016) Rheometer use in analysis of soil creep behavior. [In:] Proc. 16th International Multidisciplinary Scientific GeoConference SGEM 2016 Science and Technologies in Geology, Exploration and Mining, Vol. III, Albena, 237–244.
  • 18. Kaczmarek Ł., Dobak P., Kiełbasiński K. (2017) Preliminary investigations of creep strain of Neogene clay from Warsaw in drained triaxial tests assisted by computed microtomography. Studia Geotechnica et Mechanica (in press).
  • 19. Kempfert H., Gebreselassie B. (2006) Excavations and Foundations in Soft Soils. Springer. DOI: 10.1007/3-540-32895-5.
  • 20. Kuhn M., Mitchell J. (1993) New Perspectives on Soil Creep. Journal of Geotechnical Engineering 119, 3, 507–524. DOI: 10.1061/(ASCE)07339410(1993)119:3(507)
  • 21. Kumor M.K., Kumor Ł.A. (2017) Geotechniczne zagadnienia fundamentowania w iłach ekspansywnych. [In:] Analizy i doświadczenia w geoinżynierii (ed. J. Bzówka, M. Łupieżowiec). Wydawnictwo Politechniki Śląskiej, Gliwice, 281-301.
  • 22. Kisiel I. (1982) Mechnika skał i gruntów. PWN.
  • 23. Lai X.L., Wang S.M., Ye W.M., Cui Y.J. (2014) Experimental investigation on the creep behavior of an unsaturated clay. Canadian Geotechnical Journal 51, 6, 621–628. DOI: 10.1139/cgj-2013-0064.
  • 24. Le T.M., Fatahi B. (2016) Trust-region reflective optimisation to obtain soil viscoplastic properties. Engineering Computations 33, 2, 410–442.
  • 25. Le T.M., Fatahi B., Disfani M., Khabbaz H. (2015) Analyzing consolidation data to obtain elastic viscoplastic parameters of clay. Geomechanics and Engineering 8, 4, 559–594. DOI: 10.12989/gae.2015.8.4.559.
  • 26. Le T. M., Fatahi B., Khabbaz H. (2012) Viscous Behaviour of Soft Clay and Inducing Factors. Geotechnical and Geological Engineering 30, 5, 1069–1083. DOI: 10.1007/s10706-012-9535-0.
  • 27. Le T.M., Fatahi B., Khabbaz H. (2015) Numerical optimisation to obtain elastic viscoplastic model parameters for soft clay. International Journal of Plasticity 65, 1–21. DOI: 10.1016/j.ijplas.2014.08.008.
  • 28. Lei H., Lu H., Wang X., Ren Q., Li B. (2016) Changes in Soil Micro-Structure for Natural Soft Clay under Accelerated Creep Condition. Marine Georesources and Geotechnology, 365–375. DOI: 10.1080/1064119X.2015.1010669.
  • 29. Luo Q., Chen X. (2014) Experimental Research on Creep Characteristics of Nansha Soft Soil. The Scientific World Journal 5:968738. DOI: 10.1155/2014/968738.
  • 30. Li Y., M. Karstunen M. Karlsson, Dijkstra J. (2016) Evaluation of Temperature Controlled Oedometer Test Apparatus. [In:] Proc. 1st International Conference on Energy Geotechnics, Kiel, 623–627.
  • 31. Liew S.S., Gue S.S., Wong C.J. (2013) Road Construction in Soil Creep Areas. [In:] Proc. JKR Sabah Seminar: “Love Our Road”, Kota Kinabalu, 1–19.
  • 32. Mesri G., Choi Y.K. (1985) Settlement Analysis of Embankments on Soft Clays. Journal of Geotechnical Engineering 111, 4, 441–64.
  • 33. Neher H.P., Wehnert M., Bonnier P.G. (2001) An evaluation of soft soil models based on trail embankments. [In:] Proc. 10th Inter. Conf. on Computer Methods and Advances in Geomechanics, Tucson, 373–378.
  • 34. Neher H.P., Vogler U., Vermeer P.A., Viggiani C. (2003) 3D creep analysis of the Leaning Tower of Pisa. [In:] Proc. Int. Workshop on Geotechnics of soft soil, theory and praxis, Noordwijkerhout, 607–612.
  • 35. Olszak W., Perzyna P. (1966) The constitutive equations of the flow theory for a nonstationary yield condition. [In:] Applied Mechanics, Proc. 11th Int. Congress of Applied Mechanics (ed. H. Görtler), 545–553.
  • 36. Schweiger H., Ikhya I., Tschuchnigg F. (2013) Application of Numerical Methods for Estimating Settlements Due to Consolidation and Creep - Two Case Histories. Poromechanics V, 1364–1371. DOI: 10.1061/9780784412992.163
  • 37. Perzyna P. (1963) The constitutive equations for rate-sensitive plastic materials. Quarterly of Applied Mathematics 20, 321–332.
  • 38. Tsukada Y., Yasuhara K. (1995) Scale effects in one-dimensional consolidation of clay. [In:] Proc. Int. Sym. on Compression and Consolidation of Clayey Soils, Hiroshima, 211–216.
  • 39. Vermeer P.A., Neher H. P. (1999) A soft soil model that accounts for creep. [In:] Proc. Int. Sym. “Beyond 2000 in Computational Geotechnics”, Amsterdam and Rotterdam, 249–261.
  • 40. Vu Cao Minh (1977) One dimensional consolidation of soils ta king creep into account. Arch. Hydrotechniki.
  • 41. Wang Y.F., Zhou Z.G., Cai Z.Y. (2014) Studies about Creep Characteristic of Silty Clay on Triaxial Drained Creep Test. Advances in Civil and Industrial Engineering IV, 580, 355-358. DOI:10.4028/www.scientific.net/AMM.58 0-583.355.
  • 42. Watabe Y., Udaka K., Nakatani Y., Leroueil S. (2012) Long-term consolidation behavior interpreted with isotache concept for worldwide clays. Soils Found 52, 449-464.
  • 43. Waterman D., Broere W. (2005) Practical application of the soft soil creep – Part III. Plaxis Benchmarking, 22, http://kb.plaxis.nl/publications.
  • 44. Ye Y., Zhang Q., Cai D., Chen F., Yao J., Wang L. (2013) Study on New Method of Accelerated Clay Creep Characteristics Test. [In:] Proc. 18th Int. Conf. on Soil Mechanics and Geot. Eng., Paris, 461–464.
  • 45. Yin J.H. (1999) Non-linear creep of soils in oedometer tests. Geotechnique 49, 5, 699707.
  • 46. Zabuski L. (2004) Prediction of the slope movements on the base of inclinometric Measurements and numerical calculations. Polish Geological Institute Special Papers 15: 29-38.
  • 47. Zhu J., Zhao Y., Yin J. (2011) Undrained Creep Behavior of a Silty Clay in Triaxial Tests. Instrumentation, Testing, and Modeling of Soil and Rock Behavior 222, 139-146. DOI: 10.1061/47633(412)19.
  • 48. Zsoil (2014), Manual Theory, Z_Soil PC v 2014, Zace Services, Lousanne.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7974d120-ab63-4b8a-ace6-d5f4918837e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.