PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Utlenianie węglika krzemu : charakteryzacja procesu i metody symulacji kinetyki

Identyfikatory
Warianty tytułu
EN
Oxidation of silicon carbide : process characterization and kinetics modeling
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono porównanie procesu utleniania termicznego krzemu oraz węglika krzemu, kładąc nacisk na metody opisu i modelowania zjawiska wzrostu warstwy SiO₂ otrzymywanej na odpowiednim podłożu. Przedyskutowano możliwości adaptacji modeli kinetyki utleniania opracowanych dla krzemu (model Deala-Grova oraz model oparty o zjawisko emisji międzywęzłowych atomów krzemu z interfejsu) do zastosowań w technologii mikroelektronicznej węglika krzemu, szczególnie pod kątem zastosowań w węgliko-krzemowych tranzystorach mocy. Przedstawiono także wady i zalety każdego podejścia.
EN
Thermal oxidation process of silicon and silicon carbide is compared in this article. Methods of modeling and description of growth kinetic developed for silicon technology and their adaptation to silicon carbide technology are discussed. Classical Deal-Grove model and recently developed silicon interfacial emission model are investigated. Features of both models are shown and discussed.
Słowa kluczowe
Rocznik
Strony
144--148
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
autor
  • Instytut Tele- i Radiotechniczny, Warszawa
  • Politechnika Warszawska, Instytut Mikro- i Optoelektroniki
autor
  • Politechnika Warszawska, Instytut Mikro- i Optoelektroniki
autor
  • Politechnika Warszawska, Instytut Mikro- i Optoelektroniki
Bibliografia
  • [1] C. M. M. Zetterling, B. L. Weiss, “Process technology for silicon carbide devices”, Institution of Electrical Engineers (2002) DOI: 10.1049/PBEP002E.
  • [2] D. Spry, P. Neudeck, R. Okojie, L.-Y. Chen, G. Beheim, R. Meredith, W. Muller, T. Ferrier, “Electrical Operation of 6H-SiC MESFET at 500°C for 500 Hours in Air Ambient”, Proceedings IMAOS International Conference and Exhibition on High Temperature Electronics (HiTEC 2004), Santa Fe, NM, pp. WA1-WA-WA1-7 (2004).
  • [3] C. Virojanadara and L. I. Johansson, “Interfacial investigation of in situ oxidation of 4H-SiC”, Surf. Sci. 472, L145 (2001) DOI: 10.1016/S0039-6028(00)00967-5.
  • [4] K.C. Chang, N.T. Nuhfer, L.M. Porter, Q. Wahab, “High-carbon concentrations at the silicon dioxide-silicon carbide interface identified by electron energy loss spectroscopy”, Appl. Phys. Lett. 77, pp. 2186 (2000) DOI: 10.1063/1.1314293.
  • [5] M. B. Johnson, M. E. Zvanut, O. Richardson, “HF Chemical etching of SiO₂ on 4H and 6H SiC”, J. Electron. Mater. 29, 368 (2000) DOI: 10.1007/s11664-000-0079-3.
  • [6] C. Raynaud, “Effect of some technological parameters on Fowler–Nordheim injection through tunnel oxides for non-volatile memories”, J. Non-Crystal. Solids, pp. 280 (2001) DOI: 10.1016/S0022-3093(00)00376-8.
  • [7] K. McDonald, M.B. Huang, R.A. Weller, L.C. Feldman, J.R. Williams, F.C. Stedile, I.J.R. Baumvol, C. Radtke,” Comparison of nitrogen incorporation in SiO₂/SiC and SiO₂/Si structures” Appl. Phys. Lett. 76, pp. 568 (2000) DOI: 10.1063/1.125819.
  • [8] I. Trimaille, J.-J. Ganem, I. C. Vickridge, S. Rigo, G. Battistig, E. Szilágyi, I. J. Baumvol, C. Radtke, F. C. Stedile, “Thermal oxidation of 6H-SiC studied by oxygen isotopic tracing and narrow nuclear resonance profiling” Nucl. Instrum. Methods Phys. Res. B 914, pp. 219–220 (2004) DOI: 10.1016/j.nimb.2004.01.187.
  • [9] I. Vickridge, J. Ganem, Y. Hoshino, I. Trimaille, “Growth of SiO2 on SiC by dry thermal oxidation: mechanisms”, Journal of Physics D: Applied Physics, Vol. 40, Issue 20, pp. 6254-6263 (2007) DOI: 10.1088/0022-3727/40/20/S10.
  • [10] E. Szilágyi, P. Petrik, T. Lohner, A. A. Koós, M. Fried, G. Battistig, “Oxidation of SiC investigated by ellipsometry and Rutherford back-scattering spectrometry”, Journal of Applied Physics, Vol. 104, Issue 1, pp. 014903-014903-7 (2008) DOI: 10.1063/1.2949268.
  • [11] Y. Song, S. Dhar, L. C. Feldman, G. Chung, J. R Williams,” Modified Deal Grove model for the thermal oxidation of silicon carbide”, Journal of Applied Physics, Vol. 95; p. 9, pp. 4953–4957, (2004) DOI: 10.1063/1.1690097.
  • [12] N.G. Wright, C.M. Johnson, A.G. O’Neill,” Oxidation modelling for SiC”, Wide-Bandgap Semiconductors for High-Power, High-Frequency and High-Temperature Applications – 1999, Syposium of the Materials Research Society, pp. 135–140 (1999).
  • [13] Y. Hijikata, H. Yaguchi, S. Yoshida, “A kinetic model of silicon carbide oxidation based on the interfacial silicon and carbon emission phenomenon”, Applied Physics Express, Vol. 2, Issue 2, pp. 021203 (2009) DOI: 10.1143/APEX.2.021203.
  • [14] B. E. Deal, A. S. Grove,” General Relationship for the Thermal Oxidation of Silicon,” J. Appl. Phys. Vol. 36, pp. 3770. (1965) DOI: 10.1063/1.1713945.
  • [15] Y. Hijikata, T. Yamamoto, H. Yaguchi, S. Yoshida, “Model Calculation of SiC Oxidation Rates in the Thin Oxide Regime”, Materials science forum, Vol. 600-03 (2), pp. 663-666 (2009) DOI: 10.4028/www.scientific.net/MSF.600-603.663.
  • [16] R. C. A. Harris, “Oxidation of 6H-alpha Silicon Carbide Platelets”, Journal of the American Ceramic Society Vol. 58, Issue 1, pp. 7–9, (1975).
  • [17] E. A. Irene,” The Effects of Trace Amounts of Water on the Thermal Oxidation of Silicon in Oxygen“, J. Electrochem. Soc. 121 1613 (1974) DOI: 10.1149/1.2401753.
  • [18] A. Golz, G. Horstmann, E. Stein-von-Kamienski, H. Kurz “Silicon Carbide and Related Materials 1995” Kyoto Japan, Proc. 6th Int. Conf. vol 142 pp. 633–6, (1996).
  • [19] C. E. Ramberg, G. Cruciani, K. E. Spear, R. E. Tressler, C. F. Jr Ramberg, “Low temperature oxidation of CVD SiC by electron cyclotron resonance plasma”, J. Am. Ceram. Soc. 79 pp.2897–911 (1996) DOI: 0.1016/S0254-0584(02)00068-8.
  • [20] T. Yamamoto, H. Yasuto, H. Yaguchi, S. Yoshida,” Growth Rate Enhancement of (0001)-Face Silicon–Carbide Oxidation in Thin Oxide Regime”, Jpn. J. Appl. Phys. 46, pp. L770-L772, (2007) DOI: 10.1143/JJAP.47.7803.
  • [21] T. Yamamoto, Y. Hijikata, H. Yaguchi, S. Yoshida, “Oxide Growth Rate Enhancement of Silicon Carbide (0001) Si-Faces in Thin Oxide Regime”, Japanese Journal of Applied Physics, Volume 47, Issue 10, pp. 7803 (2008) DOI: 10.1143/JJAP.47.7803.
  • [22] I. C. Vickridge, I. Trimaille, J.-J. Ganem, and S. Rigo, C. Radtke I. J. R. Baumvol, F. C. Stedile, “Limiting Step Involved in the Thermal Growth of Silicon Oxide Films on Silicon Carbide”, Phys. Rev. Lett. 89, pp.256102 (2002) DOI: 10.1103/PhysRevLett. 89.256102.
  • [23] C. Radtke, I. J. R. Baumvol, F. C. Stedile, I. C. Vickridge, I. Trimaille, J.-J. Ganem, S. Rigo, “Thermal growth of SiO2 on SiC investigated by isotopic tracing and subnanometric depth profiling”, Applied Surface Science, Vol. 212–213, pp. 570–574, (2003) DOI: 10.1016/S0169-4332(03)00403-3.
  • [24] E. A Ray, J. Rozen, S. Dhar, L. C. Feldman, J. R. Williams, “Pressure dependence of SiO₂ growth kinetics and electrical properties on SiC”, Journal of Applied Physics, Vol. 103, Issue 2, pp. 023522-023522-7 (2008) DOI: 10.1063/1.2832408.
  • [25] T. Yamamoto, Y. Hijikata, H. Yaguchi, S. Yoshida, “Oxygen-Partial-Pressure Dependence of SiC Oxidation Rate Studied by In-situ Spectroscopic Ellipsometry”, Materials science forum, vol. 600-03 (2), pp. 667-670, (2009) DOI: 10.1063/1.4736801.
  • [26] H. Z. Massoud, J. D. Plummer, “Analytical relationship for the oxidation of silicon in dry oxygen in the thin-film regime”, Journal of Applied Physics, Volume 62, Issue 8, pp.3416-3423 (1987) DOI: 10.1063/1.339305.
  • [27] H. Kageshima, K. Shiraishi, M. Uematsu, “Universal Theory of Si Oxidation Rate and Importance of Interfacial Si Emission”, Japanese Journal of Applied Physics, Vol. 38, Issue, pp. L971-L974 (1999) DOI: 10.1143/JJAP.38.L971.
  • [28] S. Ogawa, Y. Takakuwa, “Rate-Limiting Reactions of Growth and Decomposition Kinetics of Very Thin Oxides on Si(001) Surfaces Studied by Reflection High-Energy Electron Diffraction Combined with Auger Electron Spectroscopy”, Jpn. J. Appl. Phys. Vol. 45, pp.7063 (2006) DOI: 10.1143/JJAP.45.7063.
  • [29] T. Watanabe, K. Tatsumura, I. Ohdomari, “New Linear-Parabolic Rate Equation for Thermal Oxidation of Silicon”, Phys. Rev. Lett. Vol. 96 pp. 196102 (2006) DOI: 10.1103/PhysRevLett. 96.196102.
  • [30] T. Takaku; Y. Hijikqtq; H. Yaguchi; S. Yoshida, “Observation of SiC Oxidation in Ultra-thin Oxide Regime by In-situ Spectroscopic Ellipsometry”, Materials science forum, Vol. 615–17, pp. 509–512, (2009) DOI: 10.4028/www.scientific.net/MSF.615-617.509.
  • [31] Y. Hijikata, H. Yaguchi, S. Yoshida, “A kinetic model of silicon carbide oxidation based on the interfacial silicon and carbon emission phenomenon”, Applied Physics Express, Vol. 2, Issue 2, pp. 021203 (2009) DOI: 10.1143/APEX.2.021203.
  • [32] S. T. Dunham, J. D. Plummer, “Point defect generation during oxidation of silicon in dry oxygen. II. Comparison to experiment”,J. Appl. Phys. Vol. 59, pp. 2551 (1986) DOI: 10.1063/1.337004.
  • [33] K.Taniguchi, Y.Shibata, C.Hamaguchi, “Theoretical model for self interstitial generation at the Si/SiO₂ interface during thermal oxidation of silicon”, J. Appl. Phys. Vol. 65 pp. 2723 (1989) DOI: 10.1063/1.342759.
  • [34] Y. Takakuwa, M. Nihei, N. Miyamoto, “Thermal oxidation of outdiffusing SiO with permeating O₂ in a SiO₂ film studied by angle-resolved X-ray photoelectron spectroscopy”, Appl. Surf. Sci. Vol.141, pp.117–118 (1997) DOI: 10.1016/S0169-4332(97)80068-2.
  • [35] H. Kageshima, K.Shiraishi “First-Principles Study of Oxide Growth on Si(100) Surfaces and at SiO₂/Si(100) Interfaces”, Phys. Rev. Lett. 81, pp. 5936–5939 (1998) DOI: 10.1103/PhysRevLett. 81.5936.
  • [36] H. Kageshima, K. Shiraishi,M. Uematsu,” Universal Theory of Si Oxidation Rate and Importance of Interfacial Si Emission”, Jpn. J. Appl. Phys. Vol. 38 pp. L971-L974 (1999) DOI: 10.1143/JJAP.38.L971.
  • [37] M. Uematsu, H. Kageshima, K. Shiraishi, “Unified Simulation of Silicon Oxidation Based on the Interfacial Silicon Emission Model”, Japanese Journal of Applied Physics, Vol. 39, Issue 7B, pp. 699 (2000).
  • [38] Y. Hijikata, T. Yamamoto, H. Yaguchi, S. Yoshida, “Model Calculation of SiC Oxidation Rates in the Thin Oxide Regime”, Materials science forum, Vol. 600-03 (2), pp. 663–666 (2009) DOI: 10.4028/www.scientific.net/MSF.600-603.663.
  • [39] M. Uematsu, H. Kageshima, K. Shiraishi, “Simulation of wet oxidation of silicon based on the interfacial silicon emission model and comparison with dry oxidation”, Journal of Applied Physics, Vol. 89, Issue 3, pp. 1948–1953 (2001) DOI: 10.1063/1.1335828.
  • [40] M. Uematsu, H. Kageshima, K. Shiraishi, “Simulation of High-Pressure Oxidation of Silicon Based on the Interfacial Silicon Emission Model”, Jpn. J. Appl. Phys.Vol. 39, pp. L952 (2000).
  • [41] M. Uematsu, H. Kageshima, K. Shiraishi, “Oxidation Simulation of (111) and (100) Silicon Substrates Based on the Interfacial Silicon Emission Model”, Jpn. J. Appl. Phys. Vol. 39 pp. L1135 (2000).
  • [42] J. Farjas, P. Roura, “Oxidation of silicon: Further tests for the interfacial silicon emission model”, Journal of Applied Physics, Vol. 102, Issue 5, pp. 054902-054902-8 (2007) DOI: 10.1063/1.2773693.
  • [43] K. Kouda, Y. Hijikata, H. Yaguchi, S. Yoshida “In-situ Specroscopic Ellipsometry Study of SiC Oxidation at Low Oxygen-Partial-Pressures”, 15 Science and Technology of Crystals, Toyama (2009) DOI: 10.4028/www.scientific.net/MSF.645-648.813.
  • [44] M Uematsu., H. Kageshima., K. Shiraishi.,” Interfacial Silicon Emission in Dry Oxidation-the Effect of H and Cl”, Jpn. J. Appl. Phys. Vol. 41 pp. 2455–2458 (2002) DOI: 10.1143/JJAP.41.2455.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7974caa5-3183-45d8-ac8b-95b63e63420c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.