PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review of the radar absorber material and structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przegląd materiałów i struktur pochłaniających promieniowanie radarowe
Języki publikacji
EN
Abstrakty
EN
The development of technologies that can rival the devices used by other countries in the defense industry, and more importantly, can disable their devices is becoming more critical. Radar absorber materials (RAM) make the detection of the material on the radar difficult because of absorbing a part of the electromagnetic wave sent by the radar. Considering that radar is one of the most important technologies used in the defense industry, the production of non-radar materials is vital for all countries in the world. Covering a gun platform with radar absorber material reduces the radar-cross-sectional area (RCA) value representing the visibility of that platform on the radar. This review aims to present the electromagnetic principles and developed Radar Absorbent Materials (RAM) during decades from the 1960s. The frequency range 8-12 GHz in the electromagnetic spectrum is named the microwave region and used in airport radar applications. Revised basis of electromagnetic theory and defined by a variety of absorbent materials and some design classification types and techniques are described in this article.
PL
Coraz większego znaczenia nabiera rozwój technologii mogących konkurować z produktami przemysłu obronnego używanymi przez inne kraje oraz, co istotniejsze, uniemożliwiać prawidłowe działanie tych produktów. Materiały pochłaniające promieniowanie (RAM – radiation-absorbent material) utrudniają wykrycie obiektu przez radar, absorbując część wiązki elektromagnetycznej wysłanej przez to urządzenie. Biorąc pod uwagę to, że radiolokacja stanowi jedną z najistotniejszych technologii stosowanych w przemyśle obronnym, produkcja materiałów zakłócających jej skuteczność ma kluczowe znaczenie dla wszystkich krajów świata. Pokrycie platformy bojowej materiałem pochłaniającym promieniowanie ogranicza skuteczną powierzchnię odbicia (SPO), od której zależna jest widoczność tej platformy na radarze. Niniejszy artykuł ma na celu przedstawienie zasad elektromagnetyzmu oraz rozwoju materiałów pochłaniających promieniowanie począwszy od lat sześćdziesiątych XX w. Fale elektromagnetyczne o częstotliwości 8-12 GHz określane są jako mikrofale i mają zastosowanie w urządzeniach radiolokacyjnych lotnisk. W artykule przedstawiono uaktualnione podstawy teorii elektromagnetycznej, zdefiniowano różnorodne materiały pochłaniające oraz przedstawiono niektóre typy i techniki.
Twórcy
autor
  • Mechanical Engineering Department, National Defense University’s Turkish Military Academy, Ankara, Turkey
  • Mechanical Engineering Department, National Defense University’s Turkish Military Academy, Ankara, Turkey
  • Mechanical Engineering Department, National Defense University’s Turkish Military Academy, Ankara, Turkey
autor
  • Mechanical Engineering Department, National Defense University’s Turkish Military Academy, Ankara, Turkey
  • Mechanical Engineering Department, National Defense University’s Turkish Military Academy, Ankara, Turkey
Bibliografia
  • 1. Seo IS, Chin WS, Lee DG. Characterization of electromagnetic properties of polymeric composite materials with free space method. Composite Structures. 2004;66(1):533-42.
  • 2. Yaman MD. Thin film coating of glass fabrics for radar absorbing composites. Unpublished master’s thesis. İzmir, Turkey: İzmir Institute of Technology; 2015.
  • 3. Micheli D et al. Synthesis and electromagnetic characterization of frequency selective radar absorbing materials using carbon nanopowders. Carbon. 2014;77:756-74.
  • 4. Pinho MS et al. Performance of radar absorbing materials by waveguide measurements for X- and Ku-band frequencies. European Polymer Journal. 2002;38(11):2321-7.
  • 5. Fan Z et al. Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Materials Science and Engineering: B. 2006;132(1):85-9.
  • 6. Wu M et al. Electromagnetic and microwave absorbing properties of iron fibre-epoxy resin composites. Journal of Physics D: Applied Physics. 2000;33(19):2398-401.
  • 7. Park K-Y et al. Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures. Composites Science and Technology. 2006;66(3):576-84.
  • 8. Peng Z-H et al. Strong fluctuation theory for effective electromagnetic parameters of fiber fabric radar absorbing materials. Materials & Design. 2004;25(5):379-84.
  • 9. Oh J-H et al. Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges. Composites Part B: Engineering. 2004;35(1):49-56.
  • 10. Reddy B. Advances in Nanocomposites: Synthesis, Characterization and Industrial Applications. IntechOpen; 2011.
  • 11. Joshi M, Chatterjee U. 8-Polymer nanocomposite: An advanced material for aerospace applications. In: Rana S, Fangueiro R (eds.). Advanced Composite Materials for Aerospace Engineering. Cambridge: Woodhead Publishing; 2016.
  • 12. Abbasi H, Antunes M, Velasco JI. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Progress in Materials Science. 2019;103:319-73.
  • 13. Shooman ML. A study of occurrence rates of electromagnetic interference (EMI) to aircraft with a focus on HIRF (external) high intensity radiated fields. In: NASA contractor report 194895. Hampton, Virginia: National Aeronautics and Space Administration Langley Research Center; 1994.
  • 14. Vogel MH. Impact of lightning and high-intensity radiated fields on cables in aircraft. IEEE Electromagnetic Compatibility Magazine. 2014;3(2):56-61.
  • 15. Deb GK, Pande DC. Nuclear Electromagnetic Pulse (NEMP) – A Threat to Electronics. IETE Technical Review. 1987;4(1):9-19.
  • 16. Maddocks A. 23-Electromagnetic Compatibility, In: Laughton MA, Warne DJ (eds.). Electrical Engineer’s Reference Book. 16th Ed. Oxford: Newnes; 2003, p. 23-1-23-16.
  • 17. Chang C et al. New Package Scheme of a 2.5-Gb/s Plastic Transceiver Module Employing Multiwall Nanotubes for Low Electromagnetic Interference. IEEE Journal of Selected Topics in Quantum Electronics. 2006;12(5):1025-32.
  • 18. Holloway CL et al. Comparison of electromagnetic absorber used in anechoic and semi-anechoic chambers for emissions and immunity testing of digital devices. IEEE Transactions on Electromagnetic Compatibility. 1997;39(1):33-47.
  • 19. Bogush V et al. Novel Composite Shielding Materials for Supression of Microwave Radiation. In: International Conference on Microwaves, Radar and Wireless Communications, 2006. MIKON 2006. IEEE/Institute of Electrical and Electronics Engineers Incorporated; 2006.
  • 20. Ertuş EB. Production, Characterization and Industrial Applications of Radar Absorbing Materials. PhD Thesis. Graduate School of Natural and Applied Sciences of Dokuz Eylül University. 2014.
  • 21. Neo CP, Varadan VK. Optimization of carbon fiber composite for microwave absorber. IEEE Transactions on Electromagnetic Compatibility. 2004;46(1):102-6.
  • 22. Lederer PG. An Introduction to Radar Absorbent Materials (RAM). London; 1986.
  • 23. Saville P. Review of Radar Absorbing Materials. Canada; 2005.
  • 24. Iqbal MN et al. A Study of the EMC Performance of a Graded-Impedance, Microwave, Rice-Husk Absorber. Progress In Electromagnetics Research. 2012;(131):19-44.
  • 25. Pozar DM. Microwave Engineering. New Delhi: Wiley India; 2017.
  • 26. Tong XC. Advanced Materials and Design for Electromagnetic Interference Shielding. CRC Press; 2016.
  • 27. Perini J, Cohen LS. Design of Broad-Band Radar-Absorbing Materials for Large Angles of Incidence. Ieee Transactions on Electromagnetic Compatibility. 1993;35(2):223-30.
  • 28. Xu FF et al. Microwave absorbing properties and structural design of microwave absorbers based on polyaniline and polyaniline/magnetite nanocomposite. Journal of Magnetism and Magnetic Materials. 2015;374:311-6.
  • 29. Rupinder Kaur GDA. Review on Microwave Absorbing Material using Different Carbon Composites. International Journal of Engineering Research & Technology (IJERT). 2014;3(5).
  • 30. Seman FC, Cahill R. Performance Enhancement of Salisbury Screen Absorber Using Resistively Loaded Spiral Fss. Microwave and Optical Technology Letters. 2011;53(7):1538-41.
  • 31. Salisbury Screen, [online]. Available at: http://arc-tech.com/salisbury-screen/ [Accessed: 2 January 2019].
  • 32. Barton DK, Leonov SA. Radar Technology Encyclopedia. Artech House: 1999.
  • 33. Knott EF, Schaeffer JF, Tulley MT. Radar Cross Section. Institution of Engineering and Technology: 2004.
  • 34. Bhattacharyya A. Electromagnetic Fields in Multilayered Structures: Theory and Applications. Artech House: 1994.
  • 35. Sun LK et al. Broadband metamaterial absorber based on coupling resistive frequency selective surface. Optics Express. 2012;20(4):4675-80.
  • 36. Vinoy KJ, Jha RM. Trends in radar absorbing materials technology. Sadhana-Academy Proceedings in Engineering Sciences. 1995;20:815-50.
  • 37. Chambers B. Internal monitoring of the frequency response of a dynamically adaptive radar absorbing material. Electronics Letters. 1996;32(18):1711-2.
  • 38. Singh VK et al. Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite. Carbon. 2012;50(6):2202-8.
  • 39. Moglie F et al. Electromagnetic shielding performance of carbon foams. Carbon. 2012;50(5):1972-80.
  • 40. Wang GZ et al. Microwave Absorption Properties of Carbon Nanocoils Coated with Highly Controlled Magnetic Materials by Atomic Layer Deposition. Acs Nano. 2012;6(12):11009-17.
  • 41. Wang T et al. Synthesis and microwave absorption properties of Fe-C nanofibers by electrospinning with disperse Fe nanoparticles parceled by carbon. Carbon. 2014;74:312-8.
  • 42. Fan ZJ et al. Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Materials Science and Engineering B-Solid State Materials for Advanced Technology. 2006;132(1-2):85-9.
  • 43. Kangal S. Development of Radar-Absorbing Composite Structures. Master’s Thesis. Graduate School of Engineering and Sciences of İzmir Institute of Technology. İzmir, Turkey: İzmir Institute of Technology; 2013.
  • 44. Micheli D et al. X-Band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation. Composites Science and Technology. 2010;70(2):400-9.
  • 45. Feng YB et al. Electromagnetic and absorption properties of carbonyl iron/rubber radar absorbing materials. Ieee Transactions on Magnetics. 2006;42(3):363-8.
  • 46. Pinho MS et al. Aging effect on the reflectivity measurements of polychloroprene matrices containing carbon black and carbonyl-iron powder. Polymer Degradation and Stability. 2001;73(1):1-5.
  • 47. Naito Y, Suetake K. Application of Ferrite to Electromagnetic Wave Absorber and Its Characteristics. Ieee Transactions on Microwave Theory and Techniques. 1971;Mt19(1):65-&.
  • 48. Fang ZG et al. Investigation of carbon foams as microwave absorber: Numerical prediction and experimental validation. Carbon. 2006;44(15):3368-70.
  • 49. Chambers B, Tennant A. Optimised design of Jaumann radar absorbing materials using a genetic algorithm. Iee Proceedings-Radar Sonar and Navigation. 1996;143(1):23-30.
  • 50. Zhang Z et al. Fabrication and optimization of radar absorbing structures composed of glass/carbon fibers/epoxy laminate composites filled with carbon nanotubes. In: 2008 Conference on Optoelectronic and Microelectronic Materials and Devices. Sydney, NSW, Australia: IEEE; 2008, p. 209-12. DOI: 10.1109/COMMAD.2008.4802128.
  • 51. Veselago VG. The Electrodynamics of Substances with Simultaneously Negative Values of permittivity and permeability. Soviet Physics Uspekhi. 1968;10:509.
  • 52. Dubey A, Shami TC. Metamaterials in Electromagnetic Wave Absorbers. Defence Science Journal. 2012;62(4):261-8.
  • 53. Chung B, Cho J. TVT Folding Technique in Patients with Failed Stress Urinary Incontinence after TVT Procedure. Journal of the Korean Continence Society. 2001;5.
  • 54. Park KY et al. Fabrication and electromagnetic characteristics of microwave absorbers containing carbon nanofibers and NiFe particles. Composites Science and Technology. 2009;69(7-8):1271-8.
  • 55. Cao J et al. Fabrication, characterization and application in electromagnetic wave absorption of flower-like ZnO/Fe3O4 nanocomposites. Materials Science and Engineering B-Advanced Functional Solid-State Materials. 2010;175(1):56-9.
  • 56. Liu YJ et al. EMI shielding performance of nanocomposites with MWCNTs, nanosized Fe3O4 and Fe. Composites Part B-Engineering. 2014;63:34-40.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-796b9e91-d8ff-4e9f-8206-931ed02d6207
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.