PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of inorganic nitrogen and phosphorus compounds removal efficiency from different types of wastewater using microalgae cultures

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The efficiency of ammonium nitrogen (N-NH4+) and phosphate (P-PO43-) removal from wastewater with different loads of these nutrients was evaluated using Chlamydomonas reinhardtii (Сhlоrорhуtа) and Oscillatoria neglecta (Суаnорhуtа/Cyanoprokaryota). In addition, functional characteristics of the microalgae under the studied conditions were determined. It was demonstrated that Ch. reinhardtii is resistant to a wide range of concentrations of inorganic nitrogen and phosphorus compounds. Microalgae actively participate in the removal of N-NH4+ from wastewater (removal efficiency of 49–63%, depending on the initial concentration). At the same time, Ch. reinhardtii showed low levels of P-PO43- removal (7-18%) from the aquatic environment. O. neglecta, unlike Ch. reinhardtii, is sensitive to excessively high concentrations of N-NH4+ (90-140 mg l−1) and P-PO43- (26-90 mg l−1). However, it is characterized by high removal efficiency for both forms of nitrogen (60–61%) and phosphorus (43–55%) at their initial concentrations of 30–50 mg l-1 and 7–14 mg l-1, respectively. Therefore, O. neglecta is best suited for use in wastewater post-treatment
Rocznik
Strony
45--52
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Department of Ecology of Aquatic Plants and Toxicology, Institute of Hydrobiology of National Academy of Sciences of Ukraine, Geroyev Stalingrada Ave.,12, Kyiv, 04210, Ukraine
  • National Aviation University, Lyubomir Huzar Ave. 1, 03058 Kyiv, Ukraine
  • National Aviation University, Lyubomir Huzar Ave. 1, 03058 Kyiv, Ukraine
  • Department of Ecology of Aquatic Plants and Toxicology, Institute of Hydrobiology of National Academy of Sciences of Ukraine, Geroyev Stalingrada Ave.,12, Kyiv, 04210, Ukraine
Bibliografia
  • [1]. Abdel-Raouf, N., Al-Homaidan, A. A., & Ibraheem, I. B. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), 257-275. https://doi.org/10.1016/j.sjbs.2012.04.005 PMID:24936135
  • [2]. Abou-Shanab, R. A. I., Ji, M.-K., Kim, H.-C., Paeng, K.-J., & Jeon, B.-H. (2013). Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. Journal of Environmental Management, 115, 257-264. https://doi.org/10.1016/j.jenvman.2012.11.022
  • [3]. Acevedo, S., Pino, N. J. & Peñuela, G. A. (2017). Biomass production of Scenedesmus sp. and removal of nitrogen and phosphorus in domestic wastewater. Ingeniería Y Competitividad. 19 (1), 185-193.
  • [4]. Arsan, O.M., Davydov, O.A., Dyachenko, T.M., Yevtushenko, N. Yu., Zhukinskiy, V. M., Kyrpenko, N. I., Klenus, V. H., Kipnis, L. S., Lynnyk, P. M., Konovets, I. M., Lyashenko, A. V., Olshnyk, H. M., Pashkova, O. V., Protasov, O. O., Sylaeva, A. A., Sytnyk, Yu. M., Stoika, Yu. O., Tymchenko, V. M., Shapoval, T. M., Shevchenko, P. H., Shcherbak, V. I., Yuryshynets, V. I., Yakushyn, V.M. (2006). Metody gidroekologichnykh doslidzhen poverkhnevykh vod. (Methods of hydroecological investigations of surface waters.). Logos Press.
  • [5]. Aslan, S., & Kapdan, I. K. (2006). Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering, 28(1), 64-70. https://doi.org/10.1016/j.ecoleng.2006.04.003
  • [6]. Bhatnagar, A., Chinnasamy, S., Singh, M., & Das, K. C. (2011). Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Applied Energy, 88(10), 3425-3431. https://doi.org/10.1016/j.apenergy.2010.12.064
  • [7]. Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable & Sustainable Energy Reviews, 19, 360-369. https://doi.org/10.1016/j.rser.2012.11.030
  • [8]. Dyhrman, S. T. (2016). Nutrients and their acquisition: Phosphorus physiology in microalgae. In M. A. Borowitzka, J. Beardall & J. Raven (Eds.), The Physiology of Microalgae (pp. 155-183). Springer International Publishing. https://doi.org/10.1007/978-3-319-24945-2
  • [9]. Eladel, H., Esakkimuthu, S., & Abomohra, A. (2019). Dual role of microalgae in wastewater treatment and biodiesel production. In S. K. Gupta & F. Bux (Eds.), Application of microalgae in wastewater treatment (pp. 85-121). Springer. https://doi.org/10.1007/978-3-030-13909-4_5
  • [10]. European Commission. (2016). Eighth report on the implementation status and the programmes for implementation (as required by Article 17) of Council Directive 91/271/EEC concerning urban waste water treatment. COM (2016) 105.
  • [11]. Fernandes, T. V., Suárez-Muñoz, M., Trebuch, L. M., Verbraak, P. J., & Van de Waal, D. B. (2017). Toward an Ecologically Optimized N:P Recovery from Wastewater by Microalgae. Frontiers in Microbiology, 8, 1742. https://doi.org/10.3389/fmicb.2017.01742 PMID:28955317
  • [12]. Grobbelaar, J. U. (2004). Algal Nutrition - Mineral Nutrition. In A. Richmond (Ed.), Handbook of Microalgal Culture: Biotechnology and Applied Phycology (pp. 97-115). Blackwell Publishing Ltd.
  • [13]. Henze, M., Harremoës, P., Jansen, J. L. C., & Arvin, E. (2002). Wastewater treatment. Biological and chemical processes. Springer.
  • [14]. Jeffrey, S., & Humphrey, F. H. (1975). New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 167(2), 191-194. https://doi.org/10.1016/S0015-3796(17)30778-3
  • [15]. Kong, Q. X., Li, L., Martinez, B., Chen, P., & Ruan, R. (2010). Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Applied Biochemistry and Biotechnology, 160(1), 9-18. https://doi.org/10.1007/s12010-009-8670-4 PMID:19507059
  • [16]. Krzemińska, I., Pawlik-Skowrońska, B., Trzcińska, M., & Tys, J. (2014). Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess and Biosystems Engineering, 37(4), 735-741. https://doi.org/10.1007/s00449-013-1044-x PMID:24037038
  • [17]. Lim, S. L., Chu, W. L., & Phang, S. M. (2010). Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresource Technology, 101(19), 7314-7322. https://doi.org/10.1016/j.biortech.2010.04.092 PMID:20547057
  • [18]. Madkour, A. G., Rasheedy, S. H., Dar, M. A., Farahat, A. Z., & Mohamed, T. A. (2017). The differential efficiency of Chlorella vulgaris and Oscillatoria sp. to treat the municipal wastewater. Journal of Biology, Agriculture and Healthcare, 7(22), 83-94.
  • [19]. Markou, G., Vandamme, D., & Muylaert, K. (2014). Microalgal and cyanobacterial cultivation: The supply of nutrients. Water Research, 65, 186-202. https://doi.org/10.1016/j.watres.2014.07.025 PMID:25113948
  • [20]. Mau, L., Kant, J., Walker, R., Kuchendorf, C. M., Schrey, S. D., Roessner, U., & Watt, M. (2021). Wheat Can Access Phosphorus From Algal Biomass as Quickly and Continuously as From Mineral Fertilizer. Frontiers in Plant Science, 12, 631314. https://doi.org/10.3389/fpls.2021.631314 PMID:33584779
  • [21]. Mohsenpour, S. F., Hennige, S., Willoughby, N., Adeloye, A., & Gutierrez, T. (2021). Integrating micro-algae into wastewater treatment: A review. The Science of the Total Environment, 752, 142168. https://doi.org/10.1016/j.scitotenv.2020.142168 PMID:33207512
  • [22]. Moudříková, Š., Nedbal, L., Solovchenko, A., & Mojzeš, P. (2017). Raman microscopy shows that nitrogen-rich cellular inclusions in microalgae are microcrystalline guanine. Algal Research, 23, 216-222. https://doi.org/10.1016/j.algal.2017.02.009
  • [23]. Nezbritskaya, I. N., Kureyshevich, A. V., Yarovoy, A. A., Potrokhov, A. S., & Zin’kovskiy, O. G. (2019). Peculiarities of the Influence of High Concentrations of Ammonium on the Functioning of Some Species of Cyanoprokaryota, Chlorophyta, and Euglenophyta. Hydrobiological Journal, 55(2), 69-82. https://doi.org/10.1615/HydrobJ.v55.i2.60
  • [24]. Nezbritskaya, I. N., & Kureyshevich, A. V. (2015). Changes in the Content of Photosynthetic Pigments in Representatives of Chlorophyta and Cyanoprokaryota at a High Temperature. Hydrobiological Journal, 51(4), 46-56. https://doi.org/10.1615/HydrobJ.v51.i4.60
  • [25]. Parsons, T. R., & Strickland, J. D. H. (1963). Discussion of spectrophotometric determination of marineplant pigments and carotinoids. Journal of Marine Research, 21(3), 155-163.
  • [26]. Powell, N., Shilton, A., Pratt, S., & Chisti, Y. (2011). Luxury uptake of phosphorus by microalgae in full-scale waste stabilisation ponds. Water Science and Technology, 63(4), 704-709. https://doi.org/10.2166/wst.2011.116 PMID:21330717
  • [27]. Rawat, I., Ranjith Kumar, R., Mutanda, T., & Bux, F. (2011). Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88(10), 3411-3424. https://doi.org/10.1016/j.apenergy.2010.11.025
  • [28]. Razzak, S. A., Hossain, M. M., Lucky, R. A., Bassi, A. S., & de Lasa, H. (2013). Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing-A review. Renew. Renewable & Sustainable Energy Reviews, 27, 622-653. https://doi.org/10.1016/j.rser.2013.05.063
  • [29]. Renuka, N., Sood, A., Prasanna, R., & Ahluwalia, A. S. (2015). Phycoremediation of wastewaters: A synergistic approach using microalgae for bioremediation and biomass generation. International Journal of Environmental Science and Technology, 12, 1443-1460. https://doi.org/10.1007/s13762-014-0700-2
  • [30]. Rowan, K. S. (1989). Photosynthetic Pigments of Algae. Cambridge University Press.
  • [31]. SCOR-UNESCO. (1966). Determination of Photosynthetic Pigments. Monographs on Oceanographic Methodology 1. Paris: UNESCO.
  • [32]. Shamanskyi, S. I., & Boichenko, S. V. (2018). Environment-Friendly Technology of Airport’s Sewerage. In T. Karakoç, C. Colpan, & Y. Şöhret (Eds.), Advances in Sustainable Aviation (pp. 161-175). Springer. https://doi.org/10.1007/978-3-319-67134-5_11
  • [33]. Silva, N. F. P., Gonçalves, A. L., Moreira, F. C., Silva, T. F. C. V., Martins, F. G., Alvim-Ferraz, M. C. M., Boaventura, R. A. R., Vilar, V. J. P., & Pires, J. C. M. (2015). Towards sustainable microalgal biomass production by phycoremediation of a synthetic wastewater: A kinetic study. Algal Research, 11, 350-358. https://doi.org/10.1016/j.algal.2015.07.014
  • [34]. Solovchenko, A. E., Lukyanov, A. A., Vasilieva, S. G., Savanina, Ya. V., Solovchenko, O. V., & Lobakova, E. S. (2013). Possibilities of Bioconversion of Agricultural Waste with the Use of Microalgae. Moscow University Biological Sciences Bulletin, 68(4), 206-215. https://doi.org/10.3103/S0096392514010118
  • [35]. Su, Y. (2021). Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. The Science of the Total Environment, 762, 144590. https://doi.org/10.1016/j.scitotenv.2020.144590 PMID:33360454
  • [36]. Thomas, D., Minj, N., Mohan, N., & Rao, P. H. (2016). Cultivation of Microalgae in Domestic Wastewater for Biofuel Applications - An Upstream Approach. Journal of Algal Biomass Utilization, 7(1), 62-70.
  • [37]. Zabochnicka-Świątek, M., Malinska, K., & Krzywonos, M. (2014). Removal of biogens from synthetic wastewater by microalgae. Environment Protection Engineering, 40(2), 87-104. https://doi.org/10.37190/epe140207
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79692ffd-a2d6-4043-b164-27c1480eb8f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.