Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents a procedure designed for identification of projectile’s trajectory model through aerodynamic coefficients estimation. The identification process is based on firing tables artificially prepared (firing tables prepared using mathematical flight model for the projectile instead of trajectories recorded on field tests) with the use of modified point–mass and rigid body trajectory models. All the necessary data, including physical parameters of the projectile and its aerodynamic characteristics are provided. The detailed results of estimation of chosen aerodynamic coefficients are presented in both visual and tabular form. The main purpose of this paper is to establish the minimum number of trajectories (as characterized in firing tables), and the permissible error of initial parameters being passed to the mathematical model that would allow the correct identification of projectile’s trajectory model.
Rocznik
Tom
Strony
635--643
Opis fizyczny
Bibliogr. 26 poz., rys., wykr., tab.
Twórcy
autor
- Faculty of Mechatronics and Aerospace, Military University of Technology, ul. gen. Witolda Urbanowicza 2, 00-908 Warsaw, Poland
autor
- PIT-RADWAR S.A., ul. Poligonowa 30, 04-051 Warsaw, Poland
autor
- PIT-RADWAR S.A., ul. Poligonowa 30, 04-051 Warsaw, Poland
autor
- PIT-RADWAR S.A., ul. Poligonowa 30, 04-051 Warsaw, Poland
Bibliografia
- [1] D.J. Linse and R.F. Stengel, “Identification of Aerodynamic coefficients Using Computational Neural Networks”, Journal of Guidance, Control, and Dynamics 16 (6), 1018–1025 (1993).
- [2] G.T. Chapman and D.B. Kirk, “A method for extracting aerodynamic coefficients from free flight data”, AIAA Journal 8 (4), 753–758 (1970).
- [3] L.C. Anderson and J.H. Vincent, “Application of system identification to aircraft flight test data”, Proceedings of the 24th IEEE Conference on Decision and Control, 1929–1931 (1985).
- [4] R.F. Lieske and A.M. Mackenzie, Determination of aerodynamic drag from radar data, Aberdeen Proving Ground Technical Report 22010, (1972).
- [5] Y. Chen, C. Wen, H. Dou, and M. Sun, “Iterative learning identification of aerodynamic drag curve from tracking radar measurements”, Control Eng. Practice 5 (11), 1543–1553 (1997).
- [6] Y. Chen, C. Wen, J. Xu, and M. Sun, “Drag coefficient curve identification of projectiles from flight tests via optimal dynamic fitting”, Control Eng. Practice 5 (5), 627–636 (1997).
- [7] Y. Chen, C. Wen, Z. Gong, and M. Sun, “High-Order Iterative Identification of Projectile’s Aerodynamic Drag Coefficient Curve from Radar Measured Velocity Data”, IEEE Transactions on Control Systems Technology 6 (4), 563–570 (1998).
- [8] G.G. Dutta, A. Singhal, A. Kushari, and A.K. Ghosh, “Estimation of Drag Coefficient from Radar-tracked Flight Data of a Cargo Shell”, Defence Science Journal 58 (3), 377–389 (2008).
- [9] A. Dupuis: Aeroballistic range and wind tunnel tests of the Basic Finner reference projectile from subsonic to high supersonic velocities, Technical report, Defence Research Establishment, Valcartier, Quebec, 2002.
- [10] J.L. Walsh, J.H. Ahlberg, and E.N. Nilson, The Theory of Splines and Their Applications: Mathematics in Science and Engineering, Vol. 38, Academic Press, New York/London, 1967.
- [11] Z. Koruba and I. Krzysztofik, “An algorithm for selecting optimal controls to determine the estimators of the coefficients of a mathematical model for the dynamics of a self-propelled antiaircraft missile system”, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 227 (1), 12–16 (2013).
- [12] P. Lichota, “Inclusion of the D–Optimality in multisine maneuver design for aircraft parameters estimation”, J. Theor. Appl. Mech. 54 (1), 87–98 (2016).
- [13] L. Baranowski and M.A. Kojdecki, “Inverse problem of external ballistics and algorithm for determining parameters of artillery projectile motion models”, Biuletyn Wojskowej Akademii Technicznej, 56 (4), 167–186 (2007) (in Polish).
- [14] U.S. Standard Atmosphere, United States Air Force, Washington, D.C., October 1976.
- [15] K. Motyl, M. Magier, J. Borkowski, and B. Zygmunt, “Theoretical and experimental research of anti-tank kinetic penetrator ballistics”, Bull. Pol. Ac.: Tech. 65 (3), 399–404 (2017).
- [16] L. Baranowski, B. Gadomski, P. Majewski, and J. Szymonik, “Explicit “ballistic M-model”: a refinement of the implicit “modified point mass trajectory model”, Bull. Pol. Ac.: Tech. 64 (1), 81–89 (2016).
- [17] L. Baranowski, “Feasibility analysis of the modified point mass trajectory model for the need of ground artillery fire control systems”, J. Theor. Appl. Mech. 51 (3), 511–522 (2013).
- [18] STANAG 4355, The Modified Point Mass and Five Degrees of Freedom Trajectory Models, Edition 3, 2009.
- [19] L. Baranowski, “Effect of the mathematical model and integration step on the accuracy of the results of computation of artillery projectile flight parameters”, Bull. Pol. Ac.: Tech. 61 (2), 475–484 (2013).
- [20] L. Baranowski, B. Gadomski, P. Majewski, and J. Szymonik, “Comparison of explicit and implicit forms of the modified point mass trajectory model”, J. Theor. Appl. Mech. 54 (4), 1183–1195 (2016).
- [21] R.L. McCoy: Modern Exterior Ballistics. The Launch and Flight Dynamics of Symmetric Projectiles, Schiffer Publishing, 2004.
- [22] L. Baranowski and W. Furmanek, “The problem of validation of the trajectory model of 35mm caliber projectile tp-t in the normal condition”, Problemy Techniki Uzbrojenia 42 (125), 35‒44 (2013) (in Polish).
- [23] T.F. Coleman and Y. Li, “An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds”, SIAM Journal on Optimization 6, 418–445 (1996).
- [24] T.F. Coleman and Y. Li, “On the Convergence of Reflective Newton Methods for Large-Scale Non-linear Minimization Subject to Bounds”, Mathematical Programming 67 (2), 189–224 (1994).
- [25] R.L. Pope, The analysis of trajectory and solar aspect angle records of shell flights. Theory and computer programs, Department of Defence, Defence Science and Technology Organization, Technical Report WSRL-0039-TR, Weapons Systems Research Laboratory, Adelaide, South Australia, 1978.
- [26] D. Shanks and T.S. Walton, A New General Formula for Representing the Drag on a Missile Over the Entire Range of Mach Number, NAVORD (Naval Ordnance Lab) Report 3634, Maryland, USA, May, 1957.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7968f332-94de-44af-a858-d866d8a46b74