PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Resistance conditions, Poincaré inequalities, the Lip-lip condition and hardy’s inequalities

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This note investigates weaker conditions than a Poincaré inequality in analysis on metric measure spaces. We discuss two resistance conditions which are stated in terms of capacities. We show that these conditions can be characterized by versions of Sobolev–Poincaré inequalities. As a consequence, we obtain so-called Lip-lip condition related to pointwise Lipschitz constants. Moreover, we show that the pointwise Hardy inequalities and uniform fatness conditions are equivalent under an appropriate resistance condition.
Wydawca
Rocznik
Strony
50--63
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
  • Department of Mathematics Aalto University Fi-00076 Aalto, Finland
autor
  • Department of Mathematics Aalto University Fi-00076 Aalto, Finland
Bibliografia
  • [1] M. T. Barlow, R. F. Bass, T. Kumagai, Stability of parabolic Harnack inequalities on metric measure spaces, J. Math. Soc. Japan 58(2) (2006), 485–519.
  • [2] J. Björn, Boundary continuity for quasiminimizers on metric spaces, Illinois J. Math. 46(2) (2002), 383–403.
  • [3] A. Björn, J. Björn, Nonlinear potential theory on metric spaces, Tracts in Mathematics 17, European Mathematical Society, 2011.
  • [4] A. Grigor’yan, A. Telcs, Harnack inequalities and sub-Gaussian estimates for random walks, Math. Ann. 324(3) (2002), 521–556.
  • [5] J. Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001.
  • [6] J. Heinonen, P. Koskela, A note on Lipschitz functions, upper gradients, and the Poincaré inequality, New Zealand J. Math. 28 (1999), 37–42.
  • [7] S. Keith, A differentiable structure for metric measure spaces, Adv. Math. 183(2) (2004), 27–315.
  • [8] J. Kinnunen, R. Korte, Characterizations of Sobolev inequalities on metric spaces, J. Math. Anal. Appl. 344 (2008), 1093–1104.
  • [9] J. Kinnunen, P. Silvestre, Resistance conditions and applications, Anal. Geom. Metric Spaces 1 (2013), 276–294.
  • [10] R. Korte, J. Lehrbäck, H. Tuominen, The equivalence between pointwise Hardy inequalities and uniform fatness, Math. Ann. 351 (2011), 711–731.
  • [11] V. Maz’ya, Sobolev spaces with applications to elliptic partial differential equations, Grundlehren der Mathematischen Wissenschaften 342, Springer, 2011.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79676e7d-081e-4bcc-a764-ae3b295c8db3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.