Krzysztof NEUPAUER, Sebastian PATER, Katarzyna MYSZOR

e-mail: kneupauer@chemia.pk.edu.pl

Katedra Inżynierii Chemicznej i Procesowej, Wydział Inżynierii i Technologii Chemicznej, Politechnika Krakowska, Kraków

Teoretyczne i doświadczalne napromieniowanie powierzchni kolektora słonecznego

Wstęp

Słońce w ciągu roku dostarcza kuli ziemskiej największą ilość energii spośród źródeł odnawialnych. Pozyskiwanie energii oparte na promieniowaniu słonecznym nosi nazwę energetyki słonecznej, a jej początki sięgają lat 50. XX wieku [*Böer, 2005*]. Jest to dziedzina nauki bardzo szybko rozwijająca się. Jej zakres tematyczny może być traktowany szeroko: od rozwiązań instalacyj-nych systemów słonecznych, do pasywnego wykorzystania energii promieniowania słonecznego [*Gogół, 2003*].

Promieniowanie słoneczne, docierające ze Słońca do Ziemi, składa się w 6% z promieniowania ultrafioletowego (UV), w 48% z promieniowania podczerwonego (IR) oraz w 46% ze światła widzialnego [*Duffie i Beckmann, 2006*]. Strumień promieniowania słonecznego dostarczany do zewnętrznej warstwy atmosfery Ziemi, w jednostce czasu na jednostkową powierzchnię ustawioną prostopadle do padającego promieniowania w średniej odległości Ziemi od Słońca wynosi około 1 367 W/m² [*Duffie i Beckmann,2006*]. Jest to tzw. stała słoneczna. Podczas przechodzenia przez atmosferę, moc promieniowania obniża się na skutek odbicia, rozproszenia i absorpcji na cząsteczkach gazów i pyłów [*Neupauer i Magiera, 2009*].

Promieniowanie słoneczne docierające do powierzchni Ziemi charakteryzowane jest różnymi wielkościami, z których istotne znaczenie w energetyce słonecznej mają: gęstość strumienia energii promieniowania słonecznego, napromieniowanie (nasłonecznienie, insolacja) i usłonecznienie. Promieniowanie słoneczne zależy silnie od regionu i pory roku. Dla obszaru Europy Środkowej nasłonecznienie dzienne waha się latem od 7,5 kWh/m² do 0,1 kWh/m² zimą. Suma globalnego rocznego napromieniowania dla tego obszaru wynosi 700 – 1000 kWh/m², a usłonecznienie określające ilość godzin słonecznych w ciągu roku wynosi średnio ok. 1 600 h [*Quaschning, 2011*].

Szacowanie napromieniowania

Teoretycznie ilość energii docierającej w ciągu roku do powierzchni kolektora zależna jest bezpośrednio od kąta wzniesienia Słońca α_s . Jest to kąt zawarty pomiędzy płaszczyzną horyzontu, a linią prostą poprowadzoną w kierunku Słońca, zgodną z kierunkiem padania promieniowania bezpośredniego [*Chwieduk*, 2011].

Rys. 1. Zależność kąta padania bezpośredniego promieniowania słonecznego na płaszczyznę poziomą α_s , od dnia w roku oraz od godziny w danym dniu

Na rys. 1 przedstawiono zależność obliczonego kąta padania promieniowania słonecznego α_s od godziny w wybranych dniach roku według równania:

$$\alpha_{s} = \arcsin(\cos(\phi)\cos(\delta)\cos(\omega) + \sin(\phi)\sin(\delta)) \tag{1}$$

gdzie:

- ϕ szerokość geograficzna, [°]
- δ deklinacja słoneczna, czyli kąt zawarty pomiędzy prostą łączącą Ziemię i Słońce, a płaszczyzną równika, [°]
- ω kąt godzinny, czyli kątowe odchylenie wschodu lub zachodu Słońca od lokalnego południka w wyniku ruchu obrotowego Ziemi wokół jej osi; różnica każdej godziny odpowiada zmianie kąta o -15° przed południem oraz o +15° po południu, [°]

dla szerokości geograficznej odpowiadającej lokalizacji prowadzenia badań, tj. 49° $47'\,6''\,\mathrm{N}.$

Znajomość kąta padania promieniowania słonecznego na płaszczyznę poziomą jest niezbędna do określenia gęstości strumienia energii promieniowania bezpośredniego na płaszczyznę prostopadłą do kierunku promieniowania po przejściu przez atmosferę i jest obliczana wg równania:

$$I = G_{sc} D^{\left(\frac{T}{\sin(\alpha_s)}\right)}$$
(2)

gdzie:

 G_{sc} – stała słoneczna, [W/m²]

D – przepuszczalność atmosfery idealnej, D = 0.906, [-]

T – współczynnik zamglenia, [-].

Na rys. 2 przedstawiono wykresy ilości energii słonecznej padającej na jednostkę powierzchni badanego kolektora w jednostce czasu dla wybranych dni w roku obliczone według równań (2) i (3):

$$G_p = G_{sc} \left(1 + 0.033 \cos\left(\frac{360n}{365}\right) \cos\left(\theta_\beta\right) \right)$$
(3)

gdzie:

n – kolejny dzień roku, [-]

 θ_{β} – kąt padania bezpośredniego promieniowania słonecznego, [°].

Niesymetryczność przebiegów na rys. 2 spowodowana jest sposobem montażu badanego kolektora słonecznego. Kolektor nachylony był do poziomu pod kątem $\beta = 35^{\circ}$ i odchylony od kierunku południowego o kąt $\gamma = 60^{\circ}$ na zachód. Obliczenia wykonano w programie *MathCAD*.

Rys. 2. Obliczeniowa ilość energii słonecznej padającej na jednostkę powierzchni badanego kolektora w jednostce czasu lokalnego dla wybranych dni w roku

Nr 2/2015

Weryfikacja eksperymentalna

Wyniki obliczeń porównano z danymi eksperymentalnymi uzyskanymi z instalacji grzewczej pracującej w warunkach rzeczywistych. Badania prowadzono od stycznia 2011 do grudnia 2013 roku. Instalacja badawcza, zlokalizowana 60 km na południe od Krakowa w województwie małopolskim, posiadała w swoim składzie płaskie cieczowe kolektory słoneczne o powierzchni czynnej wynoszącej ok. 14,7 m².

Gęstość mocy promieniowania słonecznego mierzono za pomocą pyranometru klasy 1 zgodnie z normą [*ISO 9060, 1990*], który pracował w płaszczyźnie kolektora słonecznego. Kolektor słoneczny zamontowano równolegle do połaci dachu budynku odchylonej o 60° na zachód od kierunku południowego i nachylonej pod kątem 35° do poziomu.

Korzystając z równań (2) i (3) określono teoretyczne napromieniowanie dla promieniowania bezpośredniego na powierzchnię kolektora dla bezchmurnej pogody. Wyniki obliczeń teoretycznych i doświadczalnych zestawiono w tab. 1. Dane teoretyczne przedstawiono dla parametrów pracy rozpatrywanego kolektora słonecznego oraz dla zorientowana w kierunku południowym (kąt $\gamma = 0^{\circ}$).

Tab. 1. Wartości teoretyczne i doświadczalne napromieniowania powierzchni kolektora

	Miesiąc	Wartości teoretyczne		Wartości doświadczalne ($\gamma = 60^\circ$; $\beta = 35^\circ$)		
Lp.		$\begin{array}{l} \gamma = 60^{\circ} \\ \beta = 35^{\circ} \\ [kWh/m^{2}] \end{array}$	$\gamma = 0^{\circ}$ $\beta = 35^{\circ}$ $[kWh/m^{2}]$	2011 rok [kWh/m ²]	2012 rok [kWh/m ²]	2013 rok [kWh/m ²]
1	styczeń	50,5	77,0	20,6	13,1	10,9
2	luty	75,9	108,4	33,9	26,5	28,1
3	marzec	130,7	171,6	82,6	81,0	58,7
4	kwiecień	168,8	203,4	112,1	114,2	115,2
5	maj	201,6	226,4	164,4	156,6	118,5
6	czerwiec	204,7	222,1	128,6	139,1	124,1
7	lipiec	206,2	227,4	116,7	146,4	153,7
8	sierpień	184,6	216,2	142,1	133,3	145,1
9	wrzesień	141,5	180,0	101,6	90,2	89,7
10	październik	98,3	136,6	53,0	66,3	67,7
11	listopad	56,2	84,3	31,8	28,3	25,0
12	grudzień	40,5	63,3	15,7	18,0	30,7
	suma	1 560	1 917	1 003	1 013	967

Na rys. 3 porównano przebieg teoretycznej i doświadczalnej gęstości strumienia energii promieniowania słonecznego padającego na jednostkę powierzchni kolektora dla wybranego dnia w kolejnych latach prowadzenia badań.

W początkowej części wykresu (pomiędzy godziną 7:00, a 9:00) krzywa teoretyczna i doświadczalne przyjmują rozbieżne wartości. Powstałe różnice spowodowane są przez równania wykorzystywane do obliczeń, które nie uwzględniają promieniowania rozproszonego oraz zastosowany w instalacji pyranometr, który rejestrował promieniowanie słoneczne z całego widma światła słonecznego. W dalszej części wykresu linie schodzą się do jednej trajektorii.

Przebiegi doświadczalne z 2012 i 2013 r. po godzinie 15:00 znowu przyjmują rozbieżne wartości w stosunku do krzywej teoretycznej. Podobnie jak w pierwszej części wykresu spowodowane to jest promieniowaniem rozproszonym padającym na kolektor. Rozbieżności i duże wahania wartości danych doświadczalnych z 2011 roku to efekt zachmurzenia.

padającej na kolektor w dniu 19 maja 2011, 2012 i 2013 roku

Każdy spadek gęstości strumienia energii obrazuje czas, w którym chmury zasłaniały kolektor przed promieniowaniem słonecznym. Maksimum gęstości strumienia promieniowania dla takiego usytuowania kolektora przypada na dzień 19 maja około godziny 14:00 czasu lokalnego.

Wnioski

Wartości rocznego napromieniowania wyznaczone na drodze teoretycznej (Tab. 1) nie uwzględniały zachmurzenia, dlatego są one większe od wartości rocznego napromieniowania wyznaczonego doświadczalnie. Zachmurzenie występujące na obszarze, w którym znajdowało się stanowisko badawcze było przyczyną niższego średnio o ok. 36% napromieniowania wyznaczonego doświadczalnie w stosunku do nasłonecznienia wyznaczonego teoretycznie.

Około 80% całkowitej rocznej sumy napromieniowania, wyznaczonej na drodze doświadczalnej, przypada na sześć miesięcy od kwietnia do września. Z danych pomiarowych wynika, że w miejscu prowadzenia badań w 2011 r. w tym okresie czasu dostępne było 76% energii w skali roku, a w latach 2012, 2013 udział ten wynosił 77%.

Usytuowanie kolektora słonecznego w instalacji badawczej było narzucone przez uwarunkowania architektoniczne budynku, tzn. orientację względem stron świata i pochylenie połaci dachu. Gdyby powierzchnia kolektora była zorientowana w kierunku południowym (kąt $\gamma = 0^{\circ}$), to roczne napromieniowanie wyznaczone teoretycznie byłoby większe o ok. 23%.

LITERATURA

- Böer K.W. (ed.), 2005. The Fifty-year history of the International Solar Energy Society and its national sections. Vol. 1, 2. American Solar Energy Society Inc., Colorado
- Chwieduk D., 2011. Energetyka słoneczna budynku. Arkady, Warszawa
- Duffie J. A., Beckman W. A., 1991. Solar engineering of thermal processes. John Wiley & Sons, New York
- Gogół W., 2003. Helioenergetyka. Polska Energetyka Słoneczna, nr 1, 8-9
- ISO 9060, 1990. Solar energy Specification and classification of instruments for measuring hemispherical solar and direct solar radiation
- Neupauer K., Magiera J., 2009. Analiza sprawności kolektorów słonecznych różnych typów. Czas. Techn. Chemia, 106, nr 1, 57-65
- Quaschning V., 2011. Regenerative Energiesysteme. Carl Hanser Verlag, München

KAPITAŁ LUDZKI NARODOWA STRATEGIA SPÓJNOŚCI Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

