PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation on the effect of silane coupling agent treatment of steel fibers on the durability of UHPC

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ultra-high performance concrete (UHPC) is a type of cementitious material that has been specifically engineered to achieve exceptional mechanical properties and durability through optimized particle filling. However, the addition of steel fibers to the UHPC matrix creates a transitional region at the interface. Previous research has indicated that the use of silane coupling agents (SCA) on the surface of steel fibers is a promising approach for improving the bonding properties between the fibers and the matrix. This study aims to explore the impact of varying amounts of untreated steel fibers versus those that have undergone SCA treatment on the durability of UHPC. The findings indicate that treating steel fibers with SCA significantly narrows the pore space between the matrix and steel fibers, as well as enhances the production of hydration products on the steel fiber surface. Furthermore, this treatment facilitates the formation of a compact transition zone between the UHPC matrix and steel fibers. The electrochemical corrosion resistance, chloride ion penetration resistance, frost resistance, and sulfate erosion resistance of UHPC are all enhanced by this method. As a result, the durability of UHPC is significantly improved, making it an extremely promising avenue of research.
Rocznik
Strony
art. no. e118, 2023
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
autor
  • Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, China
  • State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 211103, China
autor
  • Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, China
  • Shandong Hi-Speed Road and Bridge Technology Co., LTD., Jinan 250021, China
autor
  • Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, China
autor
  • Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, China
autor
  • Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, China
  • Shangdong Ecological Environment Research Institute Co., Ltd., Jinan 250022, China
Bibliografia
  • 1. Zhang B, Wang M, Chen Y, Hou W, Liu C, Xiu Y. Design and preparation of ultra high performance concrete. Sci Technol Innovat. 2020;000(005):114-5.
  • 2. de Larrard F, Sedran T. Optimization of ultra-high-performance concrete by the use of a packing model. Cem Concr Res. 1994;24(6):997-1009.
  • 3. Richard P, Cheyrezy M. Composition of reactive powder concretes. Cem Concr Res. 1995;25(7):1501-11.
  • 4. Shi C, Wu Z, Xiao J, Wang D, Huang Z, Fang Z. A review on ultra high performance concrete: part I. Raw materials and mixture design. Constr Build Mater. 2015;101:741-51.
  • 5. Yu R, Spiesz P, Brouwers HJH. Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC). Cem Concr Res. 2014;56:29-39.
  • 6. Li Y, Wang X, Wei F, Sun J, Ma J. Experimental study of the freeze-thaw performnace of ultra-high strength concrete with different mineral admixtures. China Sciencepaper. 2017;012(022):2632-6.
  • 7. Yu R, Song Q, Wang X, Zhang Z, Shui Z, Brouwers HJH. Sustainable development of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC): towards to an optimized concrete matrix and efficient fibre application. J Clean Prod. 2017;162:220-33.
  • 8. Yoo D-Y, Shin H-O, Yang J-M, Yoon Y-S. Material and bond properties of ultra high performance fiber reinforced concrete with micro steel fibers. Compos B Eng. 2014;58:122-33.
  • 9. Larsen IL, Thorstensen RT. The influence of steel fibres on compressive and tensile strength of ultra high performance concrete: a review. Constr Build Mater. 2020;256:119459.
  • 10. Shao X, Qiu M, Yan B, Luo J. A review on the research and application of ultra-high performance concrete in bridge engineering around the world. Mater Rep. 2017;31(023):33-43.
  • 11. Akhnoukh AK, Buckhalter C. Ultra-high-performance concrete: Constituents, mechanical properties, applications and current challenges. Case Stud Constr Mater. 2021;15:e00559.
  • 12. Akeed MH, Qaidi S, Ahmed HU, Emad W, Faraj RH, Mohammed AS, Tayeh BA, Azevedo ARG. Ultra-high-performance fiber-reinforced concrete. Part III: fresh and hardened properties. Case Stud Constr Mater. 2022;17:e01265.
  • 13. Akeed MH, Qaidi S, Ahmed HU, Faraj RH, Mohammed AS, Emad W, Tayeh BA, Azevedo ARG. Ultra-high-performance fiber-reinforced concrete. Part IV: durability properties, cost assessment, applications, and challenges. Case Stud Constr Mater. 2022;17:e01271.
  • 14. Akeed MH, Qaidi S, Ahmed HU, Faraj RH, Mohammed AS, Emad W, Tayeh BA, Azevedo ARG. Ultra-high-performance fiber-reinforced concrete. Part II: hydration and microstructure. Case Stud Constr Mater. 2022;17:e01289.
  • 15. Akeed MH, Qaidi S, Ahmed HU, Faraj RH, Mohammed AS, Emad W, Tayeh BA, Azevedo ARG. Ultra-high-performance fiber-reinforced concrete. Part I: developments, principles, raw materials. Case Stud Constr Mater. 2022;17:e01290.
  • 16. Park SH, Dong JK, Ryu GS, Koh KT. Tensile behavior of ultra high performance hybrid fiber reinforced concrete. Cem Concr Compos. 2012;34(2):172-84.
  • 17. Du J. Mechanical properties of cement-based materials with surface modified steel fiber. Harbin Institute of Technology; 2020.
  • 18. Wu Z. Multi-investigation on fiber-matrix interfacial bond properties in ultra-high performance concrete. Hunan University; 2017.
  • 19. Ding Y, Liu J-P, Bai Y-L. Linkage of multi-scale performances of nano-CaCO3 modified ultra-high performance engineered cementitious composites (UHP-ECC). Constr Build Mater. 2020;234:117418.
  • 20. Yazıcı H, Yardımcı MY, Aydın S, Karabulut AŞ. Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes. Constr Build Mater. 2009;23(3):1223-31.
  • 21. Kim DJ, Park SH, Ryu GS, Koh KT. Comparative flexural behavior of Hybrid Ultra High Performance Fiber Reinforced Concrete with different macro fibers. Constr Build Mater. 2011;25(11):4144-55.
  • 22. Aggelis DG, Soulioti DV, Gatselou EA, Barkoula NM, Matikas TE. Monitoring of the mechanical behavior of concrete with chemically treated steel fibers by acoustic emission. Constr Build Mater. 2013;48:1255-60.
  • 23. Casagrande CA, Cavalaro SHP, Repette WL. Ultra-high performance fibre-reinforced cementitious composite with steel microfibres functionalized with silane. Constr Build Mater. 2018;178:495-506.
  • 24. Liu T, Wei H, Zhou A, Zou D, Jian H. Multiscale investigation on tensile properties of ultra-high performance concrete with silane coupling agent modified steel fibers. Cem Concr Compos. 2020;111:103638.
  • 25. Du S, Zhou Y, Sun H, Liu W, Luan C, Yuan L, Wang J, Du P, Zhou Z, Cheng X. The effect of silane surface treatment on the mechanical properties of UHPFRC. Constr Build Mater. 2021;304:124580.
  • 26. Park S-J, Jin J-S. Effect of silane coupling agent on interphase and performance of glass fibers/unsaturated polyester composites. J Colloid Interface Sci. 2001;242(1):174-9.
  • 27. Xie Y, Hill CAS, Xiao Z, Militz H, Mai C. Silane coupling agents used for natural fiber/polymer composites: a review. Compos A Appl Sci Manuf. 2010;41(7):806-19.
  • 28. Fan D, Yu R, Liu K, Tan J, Shui Z, Wu C, Wang S, Guan Z, Hu Z, Su Q. Optimized design of steel fibres reinforced ultra-high performance concrete (UHPC) composites: towards to dense structure and efficient fibre application. Constr Build Mater. 2021;273:121698.
  • 29. Husken G, Brouwers HJH. A new mix design concept for earth-moist concrete: a theoretical and experimental study. Cem Concr Res. 2008;38(10):1246-59.
  • 30. Standardization Administration of the People’s Republic of China. GB/T 2419-2005 Test method for fluidity of cement mortar, 2005.
  • 31. Standardization Administration of the People’s Republic of China. GB/T 50082-2009 Standard for test methods of long-term performance and durability of ordinary concrete, 2009.
  • 32. Boulekbache B, Hamrat M, Chemrouk M, Amziane S. Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material. Constr Build Mater. 2010;24(9):1664-71.
  • 33. Song Q, Yu R, Shui Z, Rao S, Wang X, Sun M, Jiang C. Steel fibre content and interconnection induced electrochemical corrosion of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC). Cem Concr Compos. 2018;94:191-200.
  • 34. Guo L, Wu J, Wang H. Mechanical and perceptual characterization of ultra-high-performance cement-based composites with silane-treated graphene nano-platelets[J]. Constr Build Mater. 2020;240: 117926.
  • 35. Cui S, Sheng Y, Wang Z, et al. Effect of the fiber surface treatment on the mechanical performance of bamboo fiber modified asphalt binder[J]. Constr Build Mater. 2022;347: 128453.
  • 36. Berrocal CG, Hornbostel K, Geiker MR, Lofgren I, Lundgren K, Bekas DG. Electrical resistivity measurements in steel fibre reinforced cementitious materials. Cem Concr Compos. 2018;89:216-29.
  • 37. Suryanto B, McCarter WJ, Starrs G, Ludford-Jones GV. Electrochemical immittance spectroscopy applied to a hybrid PVA/steel fiber engineered cementitious composite. Mater Des. 2016;105:179-89.
  • 38. Tang K. Stray alternating current (AC) induced corrosion of steel fibre reinforced concrete. Corros Sci. 2019;152:153-71.
  • 39. Song Q, Yu R, Shui Z, Rao S, Fan D, Gao X. Macro/micro characteristics variation of ultra-high performance fibre reinforced concrete (UHPFRC) subjected to critical marine environments. Constr Build Mater. 2020;256:119458.
  • 40. Lv L-S, Wang J-Y, Xiao R-C, Fang M-S, Tan Y. Influence of steel fiber corrosion on tensile properties and cracking mechanism of ultra-high performance concrete in an electrochemical corrosion environment. Constr Build Mater. 2021;278:122338.
  • 41. Lu Z, Feng Z-G, Yao D, Li X, Ji H. Freeze-thaw resistance of Ultra-High performance concrete: dependence on concrete composition. Constr Build Mater. 2021;293:123523.
  • 42. Miller HD, Akbarnezhad A, Foster SJ, Mesgari S, Amin A. Effects of Silane Treatment of Steel Fibres on Mechanical Properties and Durability of SFRC, High Tech Concrete: Where Technology and Engineering Meet2018, pp. 165-172.
  • 43. Nonat A. The structure and stoichiometry of C-S-H. Cem Concr Res. 2004;34(9):1521-8.
  • 44. Salvador RP, Cavalaro SHP, Segura I, Figueiredo AD, Perez J. Early age hydration of cement pastes with alkaline and alkali-free accelerators for sprayed concrete. Constr Build Mater. 2016;111:386-98.
  • 45. Cui K, Liang K, Chang J, Lau D. Investigation of the macro performance, mechanism, and durability of multiscale steel fiber reinforced low-carbon ecological UHPC. Constr Build Mater. 2022;327:126921.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-796525df-b4d9-4023-8414-7c5ab2f8bd04
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.