PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Impact of a Movement Type on Tribological Properties of AlTiN Coating Deposited on HS6-5-2C Steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the effect of the type of movement on the tribological properties of an AlTiN coating applied to a disc made of HS6-5-2C steel. Tribological tests were carried out with a tribometer operating on a ball-disc friction apparatus moving in to-and-from as well as in rotary motion. The tests were carried out under technically dry friction conditions, subject to the application of a cutting fluid used during machining in grinding, turning, milling, drilling and cutting processes. A scanning microscope was used to observe the morphology of the surface, the morphology of the AlTiN coating, and to determine its chemical composition and assess wear mechanisms. The topography of the surface was analysed before and after carrying out the friction and wear tests using a confocal microscope with interferometric mode. The results of the provided tests indicate that the cutting fluid used in the tests reduced the coefficient of friction in both rotary and the sliding – reciprocating motion about 75% and 65% respectively. It has also contributed to a reduction in linear wear in the sliding – reciprocating motion about 22%. In case of rotary motion, higher values of linear wear about 40% were recorded, due to wear of the counterspecimen.
Bibliografia
  • 1. Madej M., Ozimina D., Electroless Ni-P-Al2O3 composite coatings. Kovove Materialy 2006: 291–296.
  • 2. Sovelto O., Principles of lasers. New York Dordrecht Heidelberg London: Springer, 2010.
  • 3. Radek N., Szczotok A., Gądek-Moszczak A., Dwornicka R., Bronček J., Pietraszek J. The impact of laser processing parameters on the properties of electro-spark deposited coatings. Archives of Metallurgy and Materials 2018; 63, 2: 809–816.
  • 4. Kozior T., Mamun A., Trabelsi M., Sabantina L. Comparative analysis of polymer composites produced by FFF and PJM 3D printing and electrospinning technologies for possible filter applications. Coatings 2022; 12. https://doi.org/10.3390/coatings12010048.
  • 5. Mousapour M., Salmi M., Klemettinen L., Partanen J. Feasibility study of producing multi-metal parts by fused filament fabrication (FFF) technique. Journal of Manufacturing Processes 2021; 67: 438–46. https://doi.org/10.1016/j.jmapro.2021.05.021.
  • 6. Madej M., Ozimina D., Kurzydłowski K., Płociński T., Wieciński P., Styp-Rekowski M. Properties of diamond-like carbon coatings deposited on CoCrMo alloys. Transactions of FAMENA 2015: 79–88.
  • 7. Hogmark S, Jacobson S, Larsson M. Design and evaluation of tribological coatings. Wear 2000; 246: 20–33. https://doi.org/10.1016/S0043-1648(00)00505-6.
  • 8. Dejun K., Haoyuan G. Analysis of structure and bonding strength of AlTiN coatings by cathodic ion plating. Applied Physics A 2015; 119: 309–16. https://doi.org/10.1007/s00339-014-8969-z.
  • 9. Walczak M. Surface characteristics wear resistance of 316L stainless steel after different shot peening parameters. Advances in Science and Technology Research Journal 2023; 17: 124–32. https://doi.org/10.12913/22998624/165800.
  • 10. Madej M., Marczewska-Boczkowska K., Ozimina D. Wpływ wolframu na odporność powłok diamentopodobnych stosowanych w przemyśle chemicznym. Przemysł Chemiczny 2014; 93 (4): 500–505. https://doi.org/dx.medra.org/10.12916/przemchem.2014.500.
  • 11. He Q., DePaiva JM., Kohlscheen J., Veldhuis SC. Analysis of the performance of PVD AlTiN coating with five different Al/Ti ratios during the high-speed turning of stainless steel 304 under dry and wet cooling conditions. Wear 2022; 492–493: 204213. https://doi.org/10.1016/j.wear.2021.204213.
  • 12. Zhang Q., Wu Z., Xu YX., Wang Q., Chen L., Kim KH. Improving the mechanical and anti-wear properties of AlTiN coatings by the hybrid arc and sputtering deposition. Surface and Coatings Technology 2019; 378: 125022. https://doi.org/10.1016/j.surfcoat.2019.125022.
  • 13. Fan Q-X., Wang T-G., Liu Y-M., Wu Z-H., Zhang T., Li T. Microstructure and corrosion resistance of the AlTiN coating deposited by arc ion plating. Acta Metallurgica Sinica (English Letters) 2016; 29: 1119–1126. https://doi.org/10.1007/s40195-016-0497-8.
  • 14. Yan Q., Kuang Z., Lu J. Effect of AlTiN-coating oblique guillotine tools on their performance when shearing electrical steel sheets. The International Journal of Advanced Manufacturing Technology 2018; 99: 819–31. https://doi.org/10.1007/s00170-018-2475-y.
  • 15. Cal H de la. Oxidation behavior of AlTiN / TiN Nano-layer Hard Coating at High Temperatures, 2014.
  • 16. Li B., Xu Y., Rao G., Wang Q., Zheng J., Zhu R. Tribological properties and cutting performance of AlTiN coatings with various geometric structures. Coatings 2023; 13(2): 402. https://doi.org/10.3390/coatings13020402.
  • 17. Anders A. A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS). Surface and Coatings Technology 2014; 257: 308-325. https://doi.org/10.1016/j.surfcoat.2014.08.043.
  • 18. Xiao B-J., Chen Y., Dai W., Kwork K-Y., Zhang T-F., Wang Q-M. Microstructure, mechanical properties and cutting performance of AlTiN coatings prepared via arc ion plating using the arc splitting technique. Surface and Coatings Technology 2017; 311: 98–103. https://doi.org/10.1016/j.surfcoat.2016.12.074.
  • 19. Tooptong S., Park KH., Kwon P. A comparative investigation on flank wear when turning three cast irons. Tribology International 2018: 127–139.
  • 20. Siow PC., Abdul Ghani J., Che Haron CH., Ghazali MJ., Ria Jaafar T. Effect of carbon content in TiCxN1−x coating on the adhesivity of carbide cutting tools and machining performance. Journal of Materials Research 2016; 31: 1880–1884. https://doi.org/10.1557/jmr.2016.16.
  • 21. Szala M., Walczak M., Pasierbiewicz K., Kamiński M. Cavitation erosion and sliding wear mechanisms of AlTiN and TiAlN films deposited on stainless steel substrate. Coatings 2019; 9. https://doi.org/10.3390/coatings9050340.
  • 22. Walczak M., Pasierbiewicz K., Szala M. Effect of Ti6Al4V substrate manufacturing technology on the properties of PVD nitride coatings. Acta Phys Po A 2022; 142: 723. https://doi.org/10.12693/APhysPolA.142.723.
  • 23. Kowalczyk J., Madej M., Ozimina D. Evaluation of performance characteristics of the environmentally friendly cutting fluid with zinc aspartate. Eksploatacja i Niezawodność – Maintenance and Reliability 2020;
  • 22: 465–471. https://doi.org/10.17531/ein.2020.3.9.
  • 24. https://www.kronosedm.pl/stal-sw7m-1-3343-12.02.2024
  • 25. Kim KH., Park SD., Bae ChM. New approach to the soaking condition of 100Cr6 high-carbon chromium bearing steel. Metals and Materials International 2014; 20: 207–2013.
  • 26. https://www.alfa-tech.com.pl/stale-konstrukcyjnestopowe-stal-lozyskowa-lh15-12.02.2024
  • 27. Milewski K., Kudliński J., Madej M., Ozimina D. The interaction between diamond like carbon (DLC) coatings and ionic liquids under boundary lubrication conditions. Metalurgia 2017; 1–2: 55–58.
  • 28. https://www.oerlikon.com/balzers/pl/pl/portfolio/rozwiazania-powierzchniowe-balzers/powloki-nabazie-pvd-i-pacvd/balinit/na-bazie-tialn/balinitlatuma/?tab=specyfikacja_5 2023.
  • 29. Karata charakterystyki QUAKERCOOL 3618 HBFF
  • 30. https://egrando.pl/chlodziwa/12266341-quakercool-3618hbff-200l.html-12.02.2024
  • 31. Kowalczyk J., Milewski K., Kałdoński T.J. Biodegradowalne ciecze chłodząco-smarujące w systemach tribotechnologicznych z elementami stalowymi. Obróbka Metalu 2015; 2: 29–34.
  • 32. Niemczewska-Wójcik M. Dualny system charakteryzowania powierzchni technologicznej i eksploatacyjnej warstwy wierzchniej elementów trących. Kraków: Wydawnictwo Naukowe ITE-PIB; 2018.
  • 33. Hebda M., Wachal A. Trybologia. Warszawa: Wydawnictwo Naukowo-Techniczne; 1980.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7964ebcf-b6e9-4d8d-9e83-8b0d916d2225
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.