Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Języki publikacji
Abstrakty
Burn wounds are a unique type of injury that can affect the entire body and cause irreversible damage. They are characterized by significant morbidity and mortality due to the pathophysiology of the healing process manifested by unremitting inflammation, leading to a critical need to search for new treatments. This study focuses on the development of drug delivery systems in the form of lipid microparticles loaded with quercetin, as an agent to combat acute inflammation in burn wounds. We aimed to explore the effect of quercetin in modulating macrophage polarization from proinflammatory (M1) to anti-inflammatory (M2) phenotype. The absence of a cytotoxic effect of the produced particles on macrophages, as well as the lack of negative effects on their morphology was proven. The study confirmed the ability of quercetin and quercetin-loaded lipid microparticles to modulate macrophage polarization in an anti-inflammatory direction, based on the analysis of their surface markers expression performed with the use of flow cytometry. With the use of quercetin, the expression of M2 specific marker increased. Furthermore, better results were obtained for encapsulated quercetin, confirming the necessity of encapsulation to increase the therapeutic potential.
Czasopismo
Rocznik
Tom
Strony
2--11
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr., zdj.
Twórcy
autor
- AGH University of Krakow, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
- AGH University of Krakow, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
autor
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
autor
- AGH University of Krakow, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
- [1] H.N. Wilkinson, M.J. Hardman: Wound healing: cellular mechanisms and pathological outcomes: Cellular Mechanisms of Wound Repair. Open Biology 10(9) (2020), doi: 10.1098/rsob.200223.
- [2] G. Broughton, J.E. Janis, C.E. Attinger: The basic science of wound healing. Plastic and Reconstructive Surgery 117(7) (2006). doi: 10.1097/01.prs.0000225430.42531.c2.
- [3] P.H. Wang, B.S. Huang, H.C. Horng, C.C. Yeh, Y.J. Chen: Wound healing. Journal of the Chinese Medical Association 81(2) (2018) 94-101, doi: 10.1016/j.jcma.2017.11.002.
- [4] A. Ridiandries, J.T.M. Tan, C.A. Bursill: The role of chemokines in wound healing. International Journal of Molecular Sciences 19(10) (2018). doi: 10.3390/ijms19103217.
- [5] M. Rodrigues, N. Kosaric, C.A. Bonham, G.C. Gurtner: Wound Healing: A Cellular Perspective. Physiol Rev 99 (2019) 665-706, doi: 10.1152/physrev.00067.2017.-Wound.
- [6] K.S. Smigiel, W.C. Parks: Macrophages, Wound Healing, and Fibrosis: Recent Insights. Current Rheumatology Reports 20(4) (2018), doi: 10.1007/s11926-018-0725-5.
- [7] M.G. Jeschke, M.E. van Baar, M.A. Choudhry, K.K. Chung, N.S. Gibran, S. Logsetty: Burn injury. Nat Rev Dis Primers 6(1) (2020), doi: 10.1038/s41572-020-0145-5.
- [8] M.G. Jeschke, L.-P. Kamolz, F. Sjöberg, S.E. Wolf: Handbook of burns – Acute burn care. SpringerWienNewYork, Vol. 1, (2012), doi:10.1007/978-3-7091-0348-7
- [9] L. Rae, P. Fidler, N. Gibran: The Physiologic Basis of Burn Shock and the Need for Aggressive Fluid Resuscitation. Critical Care Clinics 32(4) (2016) 491-505, doi: 10.1016/j.ccc.2016.06.001.
- [10] C.B. Nielson, N.C. Duethman, J.M. Howard, M. Moncure, J.G. Wood: Burns: Pathophysiology of Systemic Complications and Current Management. Journal of Burn Care and Research 38(1) (2017) e469-e481, doi: 10.1097/BCR.0000000000000355.
- [11] J.A. Snell, N.-H.W. Loh, T. Mahambrey, K. Shokrollahi: Clinical review: The critical care management of the burn patient. Critical care 17(5) (2013) 241. doi: 10.1186/cc12706.
- [12] M.G. Jeschke, S. Shahrokhi, C.C. Finnerty, L.K. Branski, M. Dibildox: Wound Coverage Technologies in Burn Care: Established Techniques. Journal of Burn Care and Research 39(3) (2018) 313-318, doi: 10.1097/BCR.0b013e3182920d29.
- [13] W. Shu, Y. Wang, X. Zhang, C. Li, H. Le, F. Chang: Functional Hydrogel Dressings for Treatment of Burn Wounds. Frontiers in Bioengineering and Biotechnology 9 (2021), doi: 10.3389/fbioe.2021.788461.
- [14] H. Memariani, M. Memariani, A. Ghasemian: An overview on anti-biofilm properties of quercetin against bacterial pathogens. World Journal of Microbiology and Biotechnology 35(9) (2019), doi: 10.1007/s11274-019-2719-5.
- [15] T. Hatahet, M. Morille, A. Hommoss, J.M. Devoisselle, R.H. Müller, S. Bégu: Quercetin topical application, from conventional dosage forms to nanodosage forms. European Journal of Pharmaceutics and Biopharmaceutics 108 (2016) 41-53, doi: 10.1016/j.ejpb.2016.08.011.
- [16] V. Kant, B.L. Jangir, V. Kumar, A. Nigam, V. Sharma: Quercetin accelerated cutaneous wound healing in rats by modulation of different cytokines and growth factors. Growth Factors 38(2) (2020) 105-119, doi: 10.1080/08977194.2020.1822830.
- [17] D. Yang, T. Wang, M. Long, and P. Li: Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. Oxidative Medicine and Cellular Longevity (2020). Hindawi Limited, doi: 10.1155/2020/8825387.
- [18] Y. Li et al.: Quercetin, inflammation and immunity. Nutrients 8(3) (2016), doi: 10.3390/nu8030167.
- [19] W. Wang, K.J. Lu, C.H. Yu, Q.L. Huang, Y.Z. Du: Nano-drug delivery systems in wound treatment and skin regeneration. Journal of Nanobiotechnology 17(1) (2019), doi: 10.1186/s12951-019-0514-y.
- [20] H.M. Rostam, P.M. Reynolds, M.R. Alexander, N. Gadegaard, A.M. Ghaemmaghami: Image based Machine Learning for identification of macrophage subsets. Sci Rep 7(1) (2017), doi: 10.1038/s41598-017-03780-z.
- [21] C.-F. Tsai, G.-W. Chen, et. al.: Regulatory Effects of Quercetin on M1/M2 Macrophage Polarization and Oxidative/Antioxidative Balance. Nutrients. 14(1):67 (2022).
- [22] X. Luo, X. Bao, et. al.: The protective effect of quercetin on macrophage pyroptosis via TLR2/Myd88/NF-κB and ROS/AMPK pathway. Life Science 291 (2022).
- [23] J. Peng, Z. Yang, H. Li, B. Hao, et al.: Quercetin Reprograms Immunometabolism of Macrophages via the SIRT1/PGC-1α Signaling Pathway to Ameliorate Lipopolysaccharide-Induced Oxidative Damage. International Journal of Molecular Science 24 (2023) 5542.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Identyfikator YADDA
bwmeta1.element.baztech-7964b6bd-1e1d-4f69-98d5-fb939adf6e36