PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Pareto Optimal Solutions of the Biobjective Minimum Length Minimum Risk Spanning Trees Problem

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (19 ; 08-11.09.2024 ; Belgrade, Serbia)
Języki publikacji
EN
Abstrakty
EN
We propose an exact method that finds the complete Pareto front of the biobjective minimum length minimum risk spanning trees problem. The proposed method is based on the solution of two subproblems. The first subproblem is to find a list of all minimum spanning trees with respect of the length criterion. The second subproblem is to compose the complete Pareto front itself, based on the list of all Pareto optimal trees with minimal length. We provide detailed mathematical proofs for the correctness and running time complexity of all proposed algorithms. We also illustrate all algorithms with detailed numerical examples.
Rocznik
Tom
Strony
405--416
Opis fizyczny
Bibliogr. 11 poz., tab., wz.
Twórcy
autor
  • Informatics Department New Bulgarian University 21 Montevideo Str., 1618 Sofia, Bulgaria
  • Informatics Department New Bulgarian University 21 Montevideo Str., 1618 Sofia, Bulgaria
Bibliografia
  • 1. J. B. Kruskal, “On the shortest spanning subtree of a graph and the traveling salesman problem,” Proceedings of the American Mathematical society, vol. 7, no. 1, pp. 48–50, 1956.
  • 2. R. C. Prim, “Shortest connection networks and some generalizations,” The Bell System Technical Journal, vol. 36, no. 6, pp. 1389–1401, 1957. http://dx.doi.org/10.1002/j.1538-7305.1957.tb01515.x
  • 3. E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959. http://dx.doi.org/10.1007/bf01386390
  • 4. C. F. Bazlamaçcı and K. S. Hindi, “Minimum-weight spanning tree algorithms a survey and empirical study,” Computers & Operations Research, vol. 28, no. 8, pp. 767–785, 2001. http://dx.doi.org/10.1016/S0305-0548(00)00007-1
  • 5. P. C. Pop, “The generalized minimum spanning tree problem: An overview of formulations, solution procedures and latest advances,” European Journal of Operational Research, vol. 283, no. 1, pp. 1–15, 2020. http://dx.doi.org/10.1016/j.ejor.2019.05.017
  • 6. S. Steiner and T. Radzik, “Computing all efficient solutions of the biobjective minimum spanning tree problem,” Computers & Operations Research, vol. 35, no. 1, pp. 198–211, 2008. http://dx.doi.org/10.1016/j.cor.2006.02.023
  • 7. A. C. Santos, D. R. Lima, and D. J. Aloise, “Modeling and solving the bi-objective minimum diameter-cost spanning tree problem,” Journal of Global Optimization, vol. 60, pp. 195–216, 2014. http://dx.doi.org/10.1007/s10898-013-0124-4
  • 8. de Sousa, Ernando Gomes, Santos, Andréa Cynthia, and Aloise, Dario José, “An exact method for solving the bi-objective minimum diametercost spanning tree problem,” RAIRO-Oper. Res., vol. 49, no. 1, pp. 143–160, 2014. http://dx.doi.org/10.1051/ro/2014029
  • 9. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms, 3rd ed. Cambridge, Massachusetts: The MIT Press, 2009. http://dx.doi.org/10.5555/1614191
  • 10. M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in improved network optimization algorithms,” Journal of the ACM, vol. 34, no. 3, pp. 596–615, July 1987. http://dx.doi.org/10.1145/28869.28874
  • 11. B. Korte and J. Vygen, Spanning Trees and Arborescences. Berlin,Heidelberg: Springer Berlin Heidelberg, 2018, pp. 133–157. ISBN 978-3-662-56039-6
Uwagi
Thematic Sessions: Regular Papers
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79638180-3392-4458-a37a-70afd393ce67
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.